NASA CR 114522 Aerotherm Report No. 72-56, Vol. II

N79-78350

(NASA-CR-114522) THERMAL SCREENING OF SHUTTLE ORBITER VEHICLE TPS MATERIALS UNDER CONVECTIVE HEATING CONDITIONS. VOLUME 2: TABULATION OF TEST RESULTS (Aerotherm Acurex Corp., Mountain View) 56 p

Unclas 00/16 29531

THERMAL SCREENING OF SHUTTLE ORBITER VEHICLE TPS MATERIALS UNDER CONVECTIVE HEATING CONDITIONS

Volume II
Tabulation of Test Results

by

John W. Schaefer

August, 1973

Contract NAS2-6445

NASA Ames Research Center Moffett Field, California Nick S. Vojvodich, Technical Monitor

FOREWORD

This report is Volume II of a two volume report prepared by the Aerotherm Division of Acurex Corporation under National Aeronautics and Space Adminstration Contract No. NAS2-6445 which describes an extensive screening test program under convective heating conditions for the complete spectrum of candidate shuttle orbiter vehicle TPS materials. Volume I serves as the final report under the contract and also presents representative test results. Volume II (this report) is a complete tabulation of all test results on all test samples. This work was sponsored by the Ames Research Center with Mr. Nick S. Vojvodich as the NASA Technical Monitor. The Aerotherm Program Manager and principal investigator was Mr. John W. Schaefer. The author gratefully acknowledges the support of the Technical Monitor and the Aerotherm personnel who contributed to the program.

TABULATION OF TEST RESULTS

A complete tabulation of test results on all test samples of all materials is presented in this appendix. This tabulation includes the following:

Table 1 - Test Sample Description

Table 2 - Sample Test Conditions

Table 3 - Test Sample Response

Table 4 - Test Sample Performance Summary

Table 5 - Test Sample Surface Catalycity Results

The information presented in these tables is described below according to each set of data presented. Comments are also included where appropriate.

Table 1 - Test Sample Description

This table provides the available description of samples tested in order of increasing sample number. Additional details are available from NASA Ames* and/or the supplier. The table headings are described below.

Aerotherm Sample Number - primary numbers used for test sample identification.

Material Description - available description of the materials from which the test samples were made.

Sample Description - test sample configuration.

Supplier - source of the test samples or test sample materials supplied to NASA Ames for the test program.

Supplier Identification - sample number (if any) assigned by the supplier.

NASA Ames Reference - date the test samples were provided to Aerotherm; key to additional data available at NASA Ames and/or the supplier.

Nick S. Vojvodich, 415 965-6108

additional descriptive information where appropriate

Table 2 - Sample Test Conditions

This table provides the complete test conditions to which the test samples were exposed. Data are presented as average conditions for each test which typically covered 6 cycles. No significant deviations from the reported conditions were experienced during any test. The table headings are described below.

Test	_	test	number	identification.

Test Condition - basic test condition at which the test was

run; see Section 3.1.*

Model - model numbers used which also corresponds to

the model sting position.

Sample - Aerotherm test sample number.

Sample Description - material type, configuration, and supplier

identification where available.

Cycle - last cycle to which the sample was exposed.

Current - arc heater operating current.

Centerline Total Enthalpy - heat flux enthalpy; see Sections 2.3.2 and 3.1.

Average Total Enthalpy - energy balance and mass balance enthalpies;

see Section 2.3.3.

Chamber Pressure - nozzle plenum pressure.

Air Flow Rate - total air flow rate.

Heat Flux - cold wall convective heat flux as measured by

the calibration model prior to the test and the centerpost calorimeter of the test sample model; in the former case the small number to the right of the heat flux value is the arc heater current corresponding to the heat flux

value; see Sections 2.3.2 and 3.3.

Centerpost Stagnation

Pressure - pressure measured at the centerpost of the

test sample model.

Comments - additional information where appropriate.

^{*}All section numbers refer to Volume I.

Note that data in parenthesis indicates that the accuracy is questionable. A malfunction of the data acquisition system for Tests 1959 through 1969 resulted in a scrambled data tape. The dump of this tape was read by hand and in many cases the channel identification and corresponding data value were subject to question. The series of questionable and missing data for this tests is due to this problem.

Table 3 - Test Sample Response

This table provides the complete description of the test sample response. Data are presented for each test which typically covered 6 cycles; values are averages over the test except as noted below. The table headings are described below.

Test

Test Condition

Model

Sample

Sample Description

Cycle

See above for Table 2

- Cumulative Exposure Time total exposure time for the test sample as of the end of the test.
- Stagnation Pressure stagnation pressure to which the sample was exposed.
- Total Enthalpy heat flux enthalpy; see above for Table 2.
- Heat Transfer Coefficient- cold wall heat transfer coefficient, q_{cw}/h_{o} .
- Surface Temperature as described below; designation in title block or in table body identifies primary pyrometer.
 - Value average value (60° samples), or for first or single entry, average value at the pyrometer viewing location that is hotter (120° samples) or hottest (180° and 360° samples), and for second entry where available, average value over entire sample.

Range

- the maximum range of temperatures over the complete test period (e.g., 6 cycles) and where appropriate over the multiple viewing locations on the sample.

Assumed Emissivity

 emissivity values corresponding to the measured temperatures.

Backwall or Midplane Temperature

 thermocouple measurements; backwall for metallics, carbon-carbon composites, and ablators, and midplane for surface insulators.

Apparent Emissivity

- emissivity referenced to the TD-7 pyrometer (1.6 to 2.7 microns) assuming the thermogage and TD-9 pyrometers provide correct readings at the assumed emissivity.

Mass Loss

- mass loss since the last test on the test sample.

Dimension Change

- surface recession (positive number, referenced to the backwall) since the last test on the test sample.

Comments

- additional information where appropriate.

The comments relative to questionable data in Table 2 also apply here.

Table 4 - Test Sample Performance Summary

This table provides a supplement to the 35mm color slides in defining the performance characteristics and failure modes. Results are presented for all samples in the order in which testing was started on the samples. The table headings are described below.

Test

- test number identification of the last test performed on the sample.

Test Condition

Model

See above for Table 2

Sample

Sample Description

End Cycle

- final cycle to which the sample was exposed.

Total Exposure Time

- total time the sample was exposed to the indicated test conditions. Sample Response and Performance Characteristics

significant information related to sample response and performance

Table 5 - Test Sample Surface Catalycity Results

This table presents the test results on HCF in which heat flux was varied during a single cycle to obtain sets of surface catalycity results. The test conditions are presented in the identical format of Table 2. The test sample response is presented in a format similar to Table 3. The new headings in this latter table are described below.

Hot Wall Heat Flux

- heat flux based on the measured cold wall heat flux but corrected for hot wall conditions based on the measured surface temperature.

Radiation Equilibrium Temperature for q_{hw}

 surface temperature which would have been achieved under radiation equilibrium conditions for the hot wall heat flux and a fully catalytic surface.

Radiation Equilibrium Heat Flux for T_w

 net heat flux to the surface under radiation equilibrium conditions for the measured surface temperature.

Heat Flux Ratio q_{re}/q_{hw} - surface catalycity ratio; see Section 4.2.2.

TABLE 1

TEST SAMPLE DESCRIPTION

Comments			•
NASA/Ames Reference	6-10-71	10-28-71	11-4-71
Supplier Identification	888888445888838388888888888888888888888	PF-C-1	E4A-1-1 E4A-2-1 E4A-4-1 C4A-4-2 CH-3 CH-3 A1-1 A2 A2 A3 A3
Suppler	NASA/Langley	Convair	NASA-Lewis
Sample Description	°09	360° Truss Core	
Material Description	TDN1Cr, Preconditioned Surface	Carbon-Carbon Composite	Cb-752 Columbium/R512E Coating FS-85 Columbium/R512E Coating C129Y Columbium/R512E Coating
Aerotherm Sample Number	- 282 5 5 7 8 6 0 1 2 5 5 7 8 6 0 1 2 5 5 7 8 6 0 1 2 5 5 7 8 6 0 1 2 5 5 7 8 6 0 1 2 5 5 7 8 6 0 1 2 5 7 8 6 0 1	25 27 38 38 47 48 48 48 49 49	

TABLE 1 (Continued)

TEST SAMPLE DESCRIPTION

Comments			Hole Defect	Removal Defect	Notch Defect	Impression Defect	Hole Defect	 Removal Defect	Notes		Impression Defect			Hole Defect	Removal Defect	Notch Defect
NASA/Ames Reference	11-4-71															
Supplier Identification	A A	ຊ 85388	= 23 E	1588	12 12		;g28	7.E.F.	225	= 2	12	EE 13	A5 A5	88 4 5 5 E	1858	65 44
Supplier	NASA-Lewis/Solar	NASA-Lewis/LMSC NASA-Lewis											NASA-Lewis/Solar /LMSC /Solar	/LMSC /Solar /LMSC	/LMSC /Solar /LMSC	/2014r /LMSC /Solar
Sample Description	09															
Material Description	Coated Tantalum	Cb-752 Columbium/R512E Coating FS-85 Columbium/ C129Y Columbium/	CD-752 Columbium/ FS-85 Columbium/ C129Y Columbium/	Cb-752 Columbium/ FS-85 Columbium/	Cb-752 Columbium/ FS-85 Columbium/	C129Y Columbium/ Cb-752 Columbium/ FS-85 Columbium/	C129Y Columbium/ Cb-752 Columbium/	r5-85 Columbium/ C129Y Columbium/ Cb-752 Columbium/		CO-732 Columbium/ FS-85 Columbium/ C129Y Columbium/						
Aerotherm Sample Number	17	72 74 3	8 2 8	88	88 88 9	86 87 88	3688	933	2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	966	88	102	105 106 701	800 11	1112	211 111 711

TABLE 1 (Continued)

TEST SAMPLE DESCRIPTION

Comments	Notch Defect Impression Defect						aragi, a physician i Arte Allenderich	kaurālī Alī, vilaus viek laivu i	
NASA/Ames Reference	11-4-71	11-18-71	8-24-71	6-1-71		12-21	12-9-71	10-14-71	10-23-
Supplier Identification	354 25 25 25 25 25 25 25 25 25 25 25 25 25	ទ						•	E1A-3-1 E4A-3-2
Supplier	NASA-Lewis/LMSC /Solar /LMSC /Solar /LMSC /LMSC /Solar /LMSC /LMSC /Solar /LMSC	LMSC LMSC		NASA-MSC/MDAC	NASA-MSC/LMSC	NASA-MSC/MDAC NASA-MSC/LMSC MDAC	MDAC LMSC GE	MDAC LMSC NASA-Langley	Convair
Sample Description	°09						120°	3900	180° Truss Core
Material Description	Coated Tantalum	11-1500	Silicon Carbide Foam	H-C	11-1500	HFC LI-1500 HCF	REI HCF L1-1500 REI	LI-1500 SS41 Ablator	Carbon-Carbon Composite
Aerotherm Sample Number	118 119 120 121 123 124 125	128	130 132 134	135 136 137	138 139 140	145 145 146 147 148	150 151 153 154 155	157 158 159 160 161	163 165 166 167 168

TABLE 1 (Concluded)

TEST SAMPLE DESCRIPTION

Comments	
NASA/Ames Reference	10-28-71
Supplier Identification	PF-B-1 PF-B-2 DA .05 E-1 DIH-5 DIA 1.5-1 DA 1.5 4H7 5H8
Supplier	Convair
Sample Description	180° Truss Core
Material Description	Carbon-Carbon Composite
Aerotherm Sample Number	169 170 172 174 175 176 177 178 180

TABLE 2 SAMPLE TEST CONDITIONS METALLICS

	Comments																																			
Center Post	Stagnation Pressure	(atm)	L 2 00	+				_	1	8	+				-	200	3					-	1,500			-		-	-	200	9	-		-	-	1
		(Btu/ftasec)	12.5		-	1	+	-	!		+		-	-	_	0	5-1-			-			4 8	<u>-</u>					-	12.4	ī					-
Heat Flux	5	(Btu/ft ^s sec)	13.0 219	+	1			-		21.3 304	1	1		1		1	252 .6					-		702 277				+	-	1	12.0 22		-	+	+	
Atr Flow		(1b/sec) (B	1 4510.	+	+	+	+	+	+	2 [0 0	+		+	+	-	-	10.54	+	+	-	1	-	,	+		+	+	+	+	4410	╅	+	+	+	+	-
	Pressure	(atm)	177					-		291.					-		5						-	09					-	9	2 1	1		$\frac{1}{1}$	$\frac{1}{1}$	
age other	1	#8 (Btu/lb)	1920							212	-	1	-	_	-		081	1	-	+	+	-	- 1	8	-	 	1	+	-	+	2	-	-	+	+	-
Average Total Enthalpy		EB (Btu/lb)	2110			-				2650	-		1	-	-		2000	+	+	+	+	-	1	0412	+		+	+	-		0	+	+	+	+	-
Centerline	Cotal Enthalpy	HF (8ta/1b)	2500	_						5150					_		3540							4420						_	24.20 20			-	+	
	Current Total	(Amps)	210							260							82					_		220					-		202			+	_	-
	Cycle		Ŀ	1				-		o				_			و	-		5			\rightarrow	و			, 2	-	2	\rightarrow	2	-	- 1	92	7	_ ম
	scription		957	1 1	J	A\U	26	\mathcal{C}		₩.		ঠ	Ł	8	2		60° A3	83	ઇ	AIO	28	C_2	- 1	,00 09	28	3	A.	85	J		જુ	ı	0.3	AID	9	S
	Sample Sample Description									570							らえて														37					
	Sample		ŀ	2	0	28	'n	c		ō		27	3	4	5		٦	00	σ	28	w	o		آة	_	8	3	4	15		_	æ	δ	28	'n	و
	Model		,	3-		F				4	L			L	L		2				_		Ц	4		_			L		2					
	Test Condition		١							-	_						9	_						٢		_					0	_				-
	Test		1043		1				L	QA2		L			L		1944	-						1944		_					19.45					

_

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

	•	Comments																															
	Center Post	Stagnation Pressure (atm)	1500.						.0056							9500.						<i>9</i> 5∞.						9500.					
		Center Post (Btu/ft³sec)	19.61						5:2)							18.6						12.4	1					(8.9)					
	Heat Flux	Calibration Model (8tu/it*sec)	22.60 304						13.4 221							21.5 304						13.8 225						22.4 301					
	Afr Flow		1010.						4610.							رة ا						1510						L010					
	Chamber		001.			_			0L1.							091.				_		31.						59				 -	
	Average Total Enthalpy	HB b) (8tu/lb)	2180						800					-		0595]]			0681		_			_	0812	_				
		fpy EB (Btu/ib)	2590						05/61				_		_	2610						01P)		_				2490					
	Centerline	iotai Entha HF (Bto/ib)	0568						2390	1						4950						3290						4800					
		(Àmps)	270						203							250	Н					197					_	2A2					
}		lon Lycie	AC 12	8	97	AS 18	8	છ	A3 18	B3	63	AIG 24	L	27		A6 18		19	A5 24	82	<i>cs</i>	A3 24	63	3	A10 30	82	22	A6 24	ઢ	٠,	A5 30	23	'n
	e Parent	Sample Description	TONICE 60°		-				TO NICK 60°					_		TONCE 60						TONICE GO						TONICE 60°)
	1	Samp le	ا و		18	13	4)	2	F		Ь	82	N	e		اد		18	13	4\	51	F	\$	σ	28	ሌ	9	<u>5</u>		ò	(3	4	ē.
		9 0 1	4						2							Ψ						7						4					
	Test	Condi Clon	٦						و							٦						9						_					
			1945				L		1946					L		1946						1947						1947				E	Н

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

					•	-		Centerline	Average Total Enthalox			Ath Flore	Fea	Heat Flux	Center Post		
Po W	又	e]	al da	Test Condition Model Sample Sample Description Cycle	1pt1on	Cycle	Current T	Current Total Enthalpy	,	!	Pressure	Rate	Calibration	Center	Stagnation	Comments	
							(Amps)	(Bte/lb)	EB (8tw/1b)	(Btu/lb)	(atm)	(lb/sec)	Model (Btu/itisec)	Post (Btu/ft ² sec)			_
,		b) 2		TONIG 60	LA.	9	311	0800	OSb2	2620	159	F010.	22.9 3/2	(20.5)	- - -		_
-		21			B												_
		12			ว												
		2	2:		A8												
	. 1	2	23		88												
		2	4		જ												
П																	
	, ⊸ [4 65	୬ - 59	CONTED CO GO	o Al	و	43	10,910	4140	5/50	.143	₽ L00	43.9 HS	44.1	[36]		
П		ق		-		П	$\overline{}$									•	
	1	رم	ا ر		A2												
		<u>ق</u>	8		B2		-										-
Г		وّ	6 9		A3	_										ŧ	_
		٦	10		83												1
		\dashv															,
		2 25		09 JYKI		e	318	(200	20405	2580	SL1.	1010.	23.5 315	(20:8)	.0062		
		2			શ્												_
		5	172		ઇ	-											_
	1	7.	5		99	2											7
		2	¹		88	7											┪
Н	. 1	2	24		ગુ						_		_				_
П	1																- 1
	١ ١	4	Ĝ	MATEL CA 60°	- 1	12	459	11,550	4419	(223)	(0)	5882	45.9 460	43.0	.0068		-
	- 1	3	٦	-	Œ			-									~
		9	19		AZ												_
		Œ	98		23												
		<i>e.</i>	æ		A3		_										
\exists	1		٥		33	7											
	- 1`	+	- 1	- 1	- 1	Ġ	17.5	000	0,04	77	į	5		\downarrow	,		_
1	1	52	1	2	1	Т	270	0670	8	2250	9		776 1.17	65.3	000		_
1	- 1	72	3		E	+	+						1				7
1	- 1	2	_	1	ন্থ	7	+				1	1					-
	- 1	7,	رم		88	9	1										_
	t	23	4		88	4											_
		24	٩		62												

à

T

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

<u> </u>	Coments																																		
Center Post	Stagnation Pressure (atm)	898						6.60	1000	1				_		0068					-		1,000						ļ	900			1	1	
Flux	Center Post (Btu/ft³sec)	42.0						- 90	1.2.7							43.7					-		25.5							42.8			+	+	
Heat Flux	Calibration Model (Btu/It ² sec)	48.4	1 1				_	7 1	22 2.42							47.6 176							25.0 321						,	456 463				1	
Atr Flow							_	(0)	- 010 - 010							.00.82					_		[0]0	-		-			+	1882			-	+	
Chamber	Pressure (atm)						4	┿	-	1						آو.						\dashv	-	-	_			$\frac{1}{2}$	4	3		1	 	$\frac{1}{4}$	4
Average Total Enthalpy	R (Btu/lb)	5300	-					1201	8	1	-					558	-			_	_		5570	1	1	+			\rightarrow	200			+	+	-
		4592						, i	8	+	1					488	-						200				_			4553			1	1	1
Centerline	Test Condition Model Sample Sample Description Cycle Current Total Enthalpy HF HF (Amps) (Btd/ib)	400						1	0340							11,670							6320							11,330		-		1	
<u> </u> 	Current (Amps)	┰	+-					7.5	53	-					\vdash	415							524				-	_		458		-	$\frac{1}{1}$	+	
	O Cycle	\\ \alpha \ \al		A2	23	K3	65	-∔-	Ad 18	88		A8 24	88	1 25		A1 24		12 24			53 24	_	A9 24	3 6	- -	A8 30	68	ગુ		1	77			27	- 5
 	. Descripti	8 (A)						-	3		_ _					CONTED CO GO	CORTED TO 60 NA	5 to 60 AZ		COATED TA 60 H4	COMED CO WO B3		°o						1 1	COMMED CO GO	CORTED TO 60° NA	on 90 0			
	Sample	A CASTED A						1	7	-	_					CORTE	COMTE	COMITED (b)		COATE	COATE		SIZE			-				CONTET	CORTE				
	Sample	R	6	5	63	E	70	-	3	25	5	22	23	24		Z	F	છ	છ	27	٥		52	26	7	22	23	42		7	_	ريا	89	اد	5
	Mode	4	-	_	H			-	2	†		_				4	_			_			2							4		_			\exists
Test	Conditio	0						d	5							5							b							9	_				
	Test	ja 5,2							192	\exists						1951		Ē					1952							1952					\exists

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

	Comments																																			
Center Post	Stagnation Pressure	(atm)	-864							.865							9900							0000						,	1865				_	
		(Btu/ft*sec)	38.4	-			1			41.8					_		4					_		0.5					-	,	4 74			+	_	-
Heat Flux	Calibration Model	(Btw/ft ² sec)	41.8 427							42.2 120	1						468 tog							49.5 448							47.74 449			-	_	
Air Flow	Rate	(lb/sec) (7800		1					.0822						-	. 2800			+			-+	7900						_	288			<u> </u>	 	
Chamber		(atm)	951			-		_								_	159					_	_	12	+		1				157	1		_ _	_	_
Average Total Enthalby		(Btu/ib)	4950	1						4850					_		5300	-		1	-	- -	\dashv	8	+		-	-		-	2000	1		-	1	_
Aver Total E		(Btu/ib)	4267	_				_		4240			_				4429			1		-	-	4214	1		_ _ _				4625	1		_	-	_
Centerline	Total Enthalpy HF	(8ta/1b)	10,550	-						10,640					_		05111	•				_		11,020							1,000			-		-
		(Amps)	428							451							452							3							446					_
	Cycle		5 1	2	3		2	1 6	_	51 83		N2 3%	125	27 22	10		ß	2	3		77	K7	_		42 41			C2 18	<i>ا</i>		10	20	B	Ü	2:	63
	Sample Description		CORTED CO 60° EI	23	E3	9	29	63		CONTED CO to C	•9	3		7	2		CONTED CO LOIL	172	13	¥	K	X		3	COATED TO 60 N	°03)	7		comed to to to	0				3
	Sample		781		80	ā	82	83		F		1		م	25				86	8	88	58			=	و	89	76	35			٩١	26	93	94	95
	Mode]		2	-	L		_		L	4	L	F	L		L		12	_						٨		_	-	_	-		2		_	<u> </u>		E
3	Condition		9							9							9	1				_		٥				_	L		0			_		_
	Test		1953							3			L		L	<u> </u>	195A			L				195A		_	_				1955	_				

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

	1		-		ļ		Centerline	Average Total Enthalov		Chamber	Atr Flow	Heat Flux		Center Post		
Test	Condition	Model	Sample	Sample Sample Description Cycle	Cyc]	e Curren	Current Total Enthalpy	1	,	Pressure	Rate	٤	I	Stagnation Pressure	Comments	
						(Amps)	(Bta/ib)	(Btu/1b)	(Btu/ib)	(atm)	(lb/sec)	(Btu/rt-sec)	(Btu/ft³sec)	(atm)		1
1955	0	4	, ۲۲	COPPED (10 60 C3	3 20	े पंगठ	016,01	443	2000	158	7800'	42.5 13	51.5	9900'		Ī
-			٦	CONTED TO 60° NA							Н					Т
\vdash				CONTED S. 60° A?	42 44											Т
+-			П													1
+			و		2 20	^										Т
Н	_		36	7	๋											Т
Н																٦
9561	٥١	2		CONTED Ch 60	ーゴ	43	10,830	4430	4900	157	.∞ 9 2	44.7 453	28.4	· 2065		Т
\vdash		_			145											Т
Н	_		48		13											Т
-			49		ااد											T
1			00)		22											- 1
Н	_		101		53			_								Т
Ι					$\overline{}$				-							Т
1956	0)	4	77	COATED Co 60° C3		上が	016,01	4555	١	1	2800:	43.3 443	51.0	990		Т
Н	_		7	CONTETY TO GO NA	28 70											Т
-			و	COATED CD GO AZ	A2 46					1						T
\vdash				<u>.</u>		-				1						Т
Н				7	C2 22	\downarrow										Т
	_		5ار	7	10					_						T
Н																Т
1957	10	7	20/	DATED Co 60°	7 17	3	12,300	4912	1	1	2800.	52.0 507	43.1	9900		T
Н					77	1				1						T
-			40		- 2	-				1						Т
Н			2	CONTEDTA 60° MA	T T	4										Т
Н				_	ال					1						Т
Н			73	,	ব	-			_			-				Т
\vdash				- 1				-+		(T
1958	9	4	14		_	519	058 21	2005	8	19	0.82	51.3 5.11	25.6	,007		Т
			7		14			-		1						Т
Н			7	CONTED CO GO AZ						1						Т
\vdash			60		_	+										7
┪	-		٥	-	,									+		Т
_	-		32	725 CONTED TO 60 C4	4 7 3			-		-			-			7

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

	Comments									•																								
Center Post	Stagnation Pressure	(atm)	€1.00·						(.0083)					_	(0900)							.0061							.0061					
	Center	()							(567)						(41.0)						- 1	(4 4.0)							(47.7)					
Heat Flux	Calibration	(lb/sec) (Btu/ft?sec)	59.8 (550)						100.0 (BT)						(00b) \$.101							108:1 (BA)							104.8 (-)					
	Rate	(1b/sec)	.0082					-	.0065						1.101 C 200.							38							:8E					
Chamber	Pressure	(atm)	711						(162)					-	(95)							151							151					_
age		(8tu/1b)																																
Average Total Enthalov	<u> </u>	(Btu/ib)																																
Centerline	otal Enthalpy	(8ta/1b)	(012,51)					1	(18,900)						(24,800)							(24,100)							1					-
	Current	(Amps)	(537)						(\$14)					-	(006)							98							١					
	Cycle			25		-	1	5	7						7	- ^		_)			-1					_	- 1	7				5	-
	Sample Sample Description Cycle Current Total		COATED TO 60° CS		COATED Co too AZ		MATERITA 60 MA		CONTED TO GO DI	50	đ	53	≯ n	SH	CONTED TO 40° 34	SC	ነ ገ	3)	17	52		COMTED TO 60 E4	E-5	49	S	I-4	l IS		COMMED TO 60° E4	×	3	KS	174	B
	Sample		14	-	5	89	75	7.5	109	Γ.	113	ナニ	1	118	ļ		125	126	73	74			112	115	<u>ء</u>	119	120		=	123	15	124	119	120
	Model		4	-	_	_			2	<u> </u>				Ы	2	<u> </u>						2							7		4			
1	Condition	-1-	9		_		_		72						12							77							72					
	Test		1989		E	L		E	3	L					1961	L				E		1962					E		1983		_		E	

•

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

•	Comments																							-									
Center Post	Stagnation Pressure (atm)	0900							0000						.0001	1	1			+	+	1000	1					238	3			1	_
Flux	Center Post (Btu/ft³sec)	(51.1)					_		(45.2)						(57.4)					-	/	(29.0)						(9 4)	1	-			_
Heat Flux	Calibration Model (Btu/rt²sec)	(00°2) (-18°1	\rightarrow					-	102.5 (900)						19:1 (-)						-+	808 (387)	-		1	1		100				+	_
	Rate (1b/sec)	-0065							0065	1		1	-	_	5900					-	_	2005			+	+		200	5	+		+	_
Chamber	Pressure (atm)	<u> 5</u>							556	-					151					_		[S]	-	1	+	+		15.7		+	\downarrow	+	_
Average Total Enthalpy	#8 (8tu/jb)	_										_															4						_
├—																											-						
Centerline	Current Total Enthalpy HF (Amps) (8td/ib)								(29,800)						1							(29,100)						000	200				_
	Current (Amps)								(00 6)						١							898						-	105	-	+		_
-	n Cycle	E4 3	2 1		7 53		5		4 4	A5	- -	ある	1 99	T5 4	7 1			_	2 5	5 5		4	4	4 3	- 1	5		+	-+-	1	4		<
	Sample Description	CONTED TO GO E		9	צג	H	15		COATED TO LO A!		3	*	a	I	CONTED TO GO A4		包	X	9	ET.		CONTENTE 60 A		ع ب)	3	7		CONTEDTA 60 A4	¥ I	94	Ĉ,	_
-	Sample Sa	1	Ĺ	5	2	119	130			20	6	24	801	120	105 16		١٥١	124	200	120				101	74	100	13	\neg	3	12	િ	4	
		12	 -		<u> </u>	-			7	_	_			É	7					Ē		1 2							7				Ĺ
12	Condition Model	12	-						12						12	_						27							21				
	Test	470		E		L	E		1965					E	736		E			E		1967							89				L

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
METALLICS

Comments	TEST TERMINATED AFTER	3	SAMPLE FAILURE																										
Center Post Stagnation Pressure (atm)	2900				+	1																							
Center Post u/ft²sec)	(50.4)			1		_																							
Heat Flux Calibration Model (Btu/rtcsec) (Bt	V.89) 01-1	(T) C (4T)				_																							
Air Flow Rate		-			1	-																							
Chamber Pressure (atm)																													
thalpy (Retuils)	(2)																												
Average Total Enthalby EB WB	(arm) 10)										_	_																	
Current Total Enthalpy	(pra) 10)	200																											
Current T	_1_					1																							
Cycle	-	1	0	a a	'n	57							L		ļ	_	1	_	L				_				_	-	
Test Condition Model Sample Sample Description Cycle		CONTED 19 60 11	2 0	25	98	64																							
Sample		7		5 7	100	13									\downarrow					-		_	1		-	1	+	-	
Mode 1		J	+	\pm	\perp	\vdash	_		L	_				1	1			1	1	-	-	1	1	1	-	-	1	+	1
Test	_	2				-					-					1	1									-	1		
Test		90	1	1	1	1													L										1

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
SURFACE INSULATORS

	Comments				TEST TERMINATED DUE TO CENTER DESK							
Center Post	Stagnation Pressure (atm)	£100·	9900.	1900:	9900.	L900	[5 <u>8</u>	5885	<u>o</u>	B	861	0 [80
Flux	Center Post (Btu/ft³sec)	59.4	47.7	89	44.5	30.0	34.1	(128.)	1.01	33.4	3 .4	55.9
Heat Flux	Calibration Model (Btu/rt:sec)	61.4 541	44.6 437	7.10	44.2 439	156 1.72	27.9 251	82.0 6'10	53.6 508	\$0.5 sr4	me 2.12	31.4 391
Air Flow	Rate (1b/sec)	2800	.0082	5900	2820	T010.	(olo:	2800	2800	7910.	1010.	1010.
Chamber	Pressure (atm)	211	b51·	.149	291.	891	961.	5 P.	اِق	061	301.	<u>5</u> -
ge thalov	16 (8tu/jb)	0019	5090	1830	4840	3460	2870	0)28	5760	0504	2820	4 00
Average Total Enthalby	E8 (Btu/jb)	5240	4280	9580	4340	3720	3660	1240	4430	3590	2470	25/20
Centerline	fotal Enthalpy HF	13,600	01101	24,500	05/11	0989	0420	17,500	00[12]	7200	000	0151
	Current Tot	1 1	457	740	22	354	755	1691	200	272	344	518
	Cycle	9-	9-		24	23	2	1 00 cm	0	62	00-	18
	Sample Description Cycle	HCF 180° 6-1	5.C FOAT 8-24	HCF 180° 6-1	HCF 180° 6-1	HCF 180" 6-1	SiC FONT 8-24	81-11 20 0051-II	81-11 200 1802 11-18	1-9 08 25-11 1-9 08 08-11	Sic FOAH 80 2-24	HCF 180° 6-1
	Sample	136	25 242	140	151	364	135	1821 L21	b2)	136	135	X 4 X
	Mode	74	4	7	N-	7	4_	14	4	N-	4	2
	Condition	<u>ō</u> -	9_	21	9_	o	0	9_	9_	σ	6	σ
	Test	ōF?	1970	111	19.12	218	473	1974	4LP)	१५१	1475	iane

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
SURFACE INSULATORS

	Comments																			М	SEQUENCE DURING CYCLE 1	STORY OF THE PROPERTY OF THE P	15							
Center Post	Stagnation Pressure (atm)	1,0069		1.00		0	1000		18∕6-1		865		7	1867			48		Т	0865 5	S	21.00	Τ		.0062		-	.8713		
Heat Flux	Center Post (Btu/ft³sec)	28.5		2			22.2		45.2		(29.6)		20	42,2		7	(97			27.2		(2,2)	1	-	33.8			(51:1)	-	
Heat	Calibration Model (Btu/rt*sec)	30.3 361		72.0 265	200		21.1.3		44.7 448		42.7 432			よう	_	, 0=	2 4.1			24.5 415	_	20 7 610	L	+	35.9 381			201 546	-	
Afr Flow	Rate (1b/sec)	LOIO,		5010.	1	Т	10/0	-	.0082		-28co			183	-		2880·	-		[0 0:		2000		-	.0082		(790		
Chamber	Pressure (atm)	.188		.195		Q.	<u> </u>	-	Ş		. 62			٩	-		8			159		VL1			156		1	7.1.1.		
ige ithalpy	#8 (8tu/ib)	2880		4240		ļ	\$ \$		55,60		2250	-		3		,	2020			5030		0147			4820			<u>8</u>		
Average Total Enthalpy	EB (Btu/ib)	3560		30/07		,	g_ &_		4450	-	4190			4620		,	40.70			4040		74.07	1	-	3160			4840		
Centerline	Current Total Enthalpy HF (Amps) (8tu/1b)	7200		1960			1300		11,430		مصراها		-	11,850			10,260			0880		01K.K		-	9150			13,350		
	Current (Amps)	372		γος'	2	,	-	-	463		454	-		480			4			8		541			390			200		
_	Cycle	124		K	-		βŀ	1	و		 7	-		c	_		글	_		و	1	Ŀ	+-	1	21		-+	2	1	
	Sample Description	SICFORM 180 8-24	(I-1500 180°6-1	0.41	LI-1500 186 6-1		SIC FORM 180 4.21	1-9 al 0061-T	HCF 180° 6-1	1-1500 180 6-1	11-1500 180 11-18	11-1/5008 186 11-11		子に 80 1-1	1-9 081 05+I		II-1500 180 11-18	11-1500B 180 11-18		HCF 180 12-21	_	10-01 DAD 17-11			HCF 180° 12-21		- 1	HCF 1800 12-21		
	Sample	135	142	13/	144			741	145	146	129	20		5	146		129	8		된	48	21.	3	3	147	148		4	50	
	Model	4	H	c	1		4		2	-	4	-		1	$\frac{1}{2}$		4			2	1	_	-	1	2			7		
lest	Condition	þ		0	L	Ш	5	-	10		9			0			٥	_		9		9		-	Ò		Ц	0		
	Test	19761		5	-		計	1	1978	Н	1978	\exists	1	Z Z			1979			88 9-	1	g	<u>}</u> _	_	1981			8		

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
SURFACE INSULATORS

						-	-	Centerline	Average Total Enthalov	Г	Chamber	Air Flow		Heat Flux		Center Post	•
Test	Test Condition	Model	Sample	Sample Sample Description	otion C	Cycle C	urrent T	Current Total Enthalpy	EB	3	Pressure		Calibration Model (Bruzzzec)		Center Post (Rtu/ft³sec)	Stagnation Pressure (atm)	Comments
	ı	Т	- 1	<	_	+	(Sdupy)	(ara/lp)	T	(ar /ara)	1	+	V (2	-	7	2762	
786	<u> </u>	7	40	124	12-21	20	250	9 <u>1</u> 10	0765	2	<u> </u>	300	0	* .	5	7000	
\prod	-		0			\dagger	+										
982	9	4	ĮČ	HCF 180°	12-21	9	542	13,400	4140	2830	اِ	280	₹	345	(38.6)	£100.	
-			152		\dashv	_	\downarrow		-	-				+		-	
700	9	2		001 130	6.21	وا	304	4800	4240	4910	اري	-085c	36.5	18	32.4	2900	
	1 1	1-1	\mathbf{T}	HCF 120°	12-9				$\vdash \vdash$				+	+			
			155	LI-15006 120 12-9	3.12-9	\downarrow	+	-					+	+			
200	2	4	156	0ET 130	2.4	و	र्द्र	9760	4020	4900	151	2800	28.4	342	26.3)	2900	
)	1	T	157	157 WE 120	12-9			-					+	+			
			158	8.	12-21						1	1		\dagger	1		
]			_	- 1		+	100		4020	7070	ā	2000	20.0	247	45.1	2900	
484	0	7	_	- 1		1	7	5	+-	+	2	3000	3	1			
1	-	1	17.7	HCF 120 12-1	7 5	+	-			-							
_				2										1			
199	9	4	156	PET 120°	12-9	_	392	alle	2880	878	15.	7800.	35.5	38	(28.2)	7,900:	
				HCF 120	12-9	_				1	1			+			
\exists			158	LI-1500 120 12-9	6-21	+	_			-	_			\dagger	-		
1004	c	4		OET 120	2.27	27	352	0589	3260	4020	01:10	1010	26.6	342	26.4	1365	
		Γ	157	120°	12-9							1		+			
			158	05/J	b-21		1				-				_		
300	5	0		000	9-6	ø	295	0,00	3030	4130	150	1280	36.4	40.5	32,0	79001	
2 -	-	\top	10 T	1		+-	-	X									
\pm			1 1	2006 12	6.21						_						
					+	\dashv			į		9	7	- 1	†	000	0,00	
1985	9	4	_ [°3	, -21	တ္-		2500	2380	4040	7)1	00.	9	**	1.27	1993	
1			- 1	HCF 120	5-27	+	+										
_	-	1	158	17-150XF 120	1. 21	+	1	_				_		-			
					1	1	1										

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
SURFACE INSULATORS

	Comments																										
Center Post	Stagnation Pressure (atm)	.0062		+	8900			2900.			8900			.	9510	1	44.0	10,0	5510.		רווס.			.0141		0410	
Flux	Center Post (Btu/ft³sec)	30.3		_	24.5	1		28.8			24.3				0.0	-	8 16		26.9		282			30.3		30.0	
Heat Flux	Calibration Model (Btu/rt*sec)	35.4 34			77.7 35.2			35.3 342	Ц		28.6 mg				78.0 584		200	100	24.4 545		28.4 576			[85 28]		28.6 501	
Air Flow	Rate (1b/sec)	.0082		1	10/0		H	7800		1	1010			_	88	1	0.000	+	0280		0820	1		0620	1	.0280	+-
Chamber	Pressure (atm)	r51.			190			151			.190			,	226	1	Ş,	3	625:		513			144	1	5A5	
ge thalpy	MB (Btu/16)	4890			4020			4910			4010		_		9810		4910		4130		4650		-	<u>2</u> 8	-	2110	
Average Total Enthalpy	EB (Btu/ib)	3810		1	2770	_		3130			3430				9	-	9	2014	4200	_	4270			41410		4210	
Center]ine	Current Total Enthalpy HF (Amps) (Btp/ib)	9770			TOZO			9790		-	7050			1	00,00	-	6100		5160		200			200	_	5120	
		392			242			393		-	364			į	200		F.04	5_	587	-	579		. (128		184	
	Cycle	44	1	_	2		<u> </u>	8		<u>.</u>	30		9	+	9	-	1	9	21		57		-	a	1	g	
	Model Sample Sample Description	PEI 120° 12-9	HCF 120° 12-9	T-1206 170 12-9	P-21 00 13-9	(20)	P-21 021 2005121	REI 120 12-9	P-51 621 37H	-1-1-2006 120 12-9	PET 120° 12-1	HCF 120° 12-9	12-1500 6- 120° 12-9	١	HCF 180 6-1	1-9 081 004-I	, 191 H	22 24	HCF 180° 6-1	1-1500 180 6-1	\$1 HAG 75	[[HGF 180 6-1	(I-1500 180 6-	S. Com 180	1 1
	Sample			37	3,5		7 851	a 531	-	25		151	58 0		^	1	127	T^{-}	138 1	4	325	<u>*</u>		7	14	_	134
		2	1	1	4			7			4				7	1		1	2		4		- (1		4	
Test	Test Condition	0		-	a			0			٥			,			K		5	1	5		1	2		2	1 1
	Test	198		_	760			93		1	1987		_	Ş	2	-	000]_	1991		1991	\exists	3	77		1992	H

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
SURFACE INSULATORS

Comments	CONTRACTOR											
Center Post	Stagnation Pressure (atm)	0410.	[E]O.	86.10	6210'							
	Center Post (Btu/ft³sec)	90.	9	8 62	(je							
Heat Flux	Calibration Model (Btu/itsec)	24.7 sg1	29.5 sgn	29.2 5.26	29.4 589							
Atr Flor		#	0220	0280	0280							
100	Pressure	5,45	543	-544	542							
		5110	50610	5,20	5020							
Average	Total Enthalpy EB MB	4350 4350	4290	4520	4200							
		(8ta/10)	0915	5160	5160							
-	Current To	(Amps)	581	281	888							1
	Cycle	42	42	8	13		+		+	-		+
	Sample Sample Description Cycle	HCF 180 6-1	1 1-1	1-150 80 6-1								
-	ample	158 H	1 2.	+++								
-	Hode 1	C1-	- 4	7	4							
	Test Condition Model	[3	ū	5	- ko						-	
	Test	1943	943	185	- 400					Ц_		

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
CARBON-CARBON COMPOSITES

		1	1	T	Т	<u> </u>	_	7	$\overline{}$	_	Т	T	Τ'	T	Τ-	-	_	÷	т-	_	1	Τ-	_	_	-	_	_	-	,	_	-	Τ-	_
	Comments																						-										
Center Post	Stagnation Pressure (atm)	8900'	8900.	3																													
	Center Post (Btu/ft³sec)	(03:0)	(101.0)	2 2																													
Heat Flux	(1b/sec) (Btu/rtisec)	895 508	74.2 547																														
Air Flow	(lb/sec)	1100	16	"																													
Chamber	(atm)	751.	157	15.1																													
ge thalpy	#8 (8tu/lb)	1100	080																														
Average Total Enthalpy	E8 (Btu/1b)	0630	0919	f 1																													
Centerline Current Total Enthalou	HF HF (Bte/lb)	18,925	18,950																														
Current	(Amps)	200	s. R																							1							
2	,	2	4	Ш																													
Test Condition Model Sample Sample Description		S 360°	-2 340				ļ																										
Samole		E44-5	C1A-2													_																	
Samole		40	38													1																	
rode]		- 2	7		J	\int											Ī										1			1	1	1	
Test Condition		=	=																														
les t		B	20/02																														

٠

TABLE 2 SEMPLE TEST CONDITIONS (Concluded)
ABLATORS

Comments							-																				
Center Post	Pressure (atm)																										
	Center Post (Btu/ft³sec)																										
Heat Flux	Calibration Model (Btu/rt ² sec)	38.7 342		38.0 39.4	38.1 389	38.9 389	48.7 581	45 576	102.0 578	101.0 575																	
Air Flow	Kate (1b/sec)	_	1 1	2900.	2800.	2800	\$	3000	\$	88											-						
Chamber	Pressure (atm)	152		£5\'	251.	.153	148	147	,148	.147															 -		
	#8 (8tu/In)	1967	200	4570	4560	4580	1560	1540	7560	1560												-					
Average Total Enthalpy	EB (ET./.Th)	(2) (2)	120	4060	4090	40,00	614B	0949	0119	0290																	
Centerline	Total Enthalpy HF	(all /ma)	31	0596	9,650	97.00	19,100	19,100	19,100	14,100																	
	Current	(sdumy)	376	341	370	392	537	518	LF?	E					1	1	-					1	+	-	+		
_	Cycle	- 1	4	-	-	-	1	1	7	-1	-		-	1	+	+		-		1		+	+	+	+	\dashv	
	Condition Model Sample Description Cycle Current Total Enthalpy		55-4 H 30	160 55-41 Hc 360	55-41 260	-55-41 360°	SS-41 360°	SS-41 360°	55-41HC 360	55-41 Hc 360																	
	Sample	- 1	154	091	163	49	29	166	9	162	}	L				\perp			-			_	-	-	+	_	
	Mode]	_	7	ಶ	2	4	2	4	2	4			_			_	1	-	_	_				\downarrow	+	+	
}	Condition	_1	0	9	0	0	2	3 12	21	21	1								-							1	
	Test		ā	2011	207	202	502	2013	2014	2014]

TABLE 3 TEST SAMPLE RESPONSE METALLICS

										-	Surface	Surface Temperature TO-7		ao [[andra				
ž	Test	Model	Sample	Sample Description	Cycle	Exposure Time	Heat	Stagnation Pressure	Total Enthalpy	Transfer Coefficient Value		Range	Assumed Emissivity T	Midplane Temperature	Apparent Emissivity	Mass	Dimension Change	Comments
					,	(min)	(Btu/ft2sec)	-		(1b/ft²sec)			·	(*F)	Ξ		(fuch)	
1943	9	2	-	TONCE 60 A	<u>ه</u> آة	08)	12.5	1500'	3500	1 9500	-	סרדו- 25רי	-85	1140	, 85	510	9/00:	
_	-		2	Ø								סררו- סורו		1			5,00	
\vdash	_		5	5	_						1790 1730.	1730-1800		88	.83	8	8000	
\vdash			82	A10] c						- 04LI OLLI	1740-1790		(1420)	ļ	00.	9.0	
Н			n	8	29							1140-1800		88	<u>p</u> ,		85	
\dashv		-	و	2	2						05L1 09L1	0811-0511		1810	٤		 ∞14	
1942	٢	1	2	3		Š	F. F.	MET	7	Ţ	0.0	000	70	050		000		
) - -	<u> </u> -) -	3) -	}-		_	₹ 1	3	0,01	36	\ >-	3 5	20		500	
+	1	+	22		# 4.	1		-	+		0102 - 0161 0661	0102 - 0161	+	0 1	S 1	3 8	2002	
+	L	-	5	Ā	10						1970 1930	1920 - 1990		30	12	Τ-	1858	
\vdash		-	4	eg.	35						900 1960	920-200		540	φ'n	0/2	818	
Н		H	S	57	10					_	alb -026/ 0161	919		950	.83	0.0	1,000	
												-						
966	9	2	г	TONICE 60 A3	و	180	11.9	9500.	3340	9500.	-0017 9271	051-001	ن 5	100	<u>8</u>	.011	0002	
-			00	6.5	,,			_		1	-080 OIL	091-089		1	1	.0110	0014	
-			5	7	3	_				-		1760 - 1800		1	1	9/0.	5)8	
Н			28	AND	7	80					0221-0691 02L1	1720		(066)			1:000	
-	_		ß	92	2	_					-01/11 OFF	1750		1	1	8,	8	
H			و	17	2						02L1-0191 01L1	1730		160	.15	·87	.005.003	
444	٢	_	1	1 27 7	,	ğ	ا م	ž	, d	1,000	-040	1960	20	1001	20	0	0000	
-	-	-	2	3	3 -	3	5-	+-	-	1	I	1990	o –	000			38	
+	L	-	0	2	5						1960 1960	1960-2000		2	J	570	2000-	
\vdash			2	4	45 12	32			-		970 1920-	01961		25.92	1	88	5200-	
Н			14	£8	,						1980 1940-	1940-2010		1930	,95	0.8		
Н			5	3			_				1960 1900-	1490		98	i	20	-3000	
1	\perp	,	,		1	3	•			_			100	2			1000	
3	و	2	-	10 C 6 P3	2	8	4.7	ص	3430	9500		8	o O	<u>-</u> 3	X Š		Seco	
\dashv	1	_	00	63	2					1			-	1	١	8	-18804 P	
-			0	0	- 1				-		님	0861	-	1	١	8	0002	
-			82	ΑK	9	\$ \$					<u>اد</u> '	120-1120		(1420)	١	ġ	-1881	
\dashv			'n	82							٩	011.		1		83	1000	
_	_	_	و	<u>ر</u>	77	_	_	_	_	_	150 150	0.5.	_	1	1	104	900	

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

	Comments							SOME DXIDE CORTING LOST DURING ROUND			9 086 1980 F						PYB 2290 °F									PYB 1940 F							-,0009 PXB 2300 F	
	Dimension Change	(inch)	-,005 -,0002	- 889	8	900	<u>8</u>	8 -		000		- 00	002 - 0005	-,0010012	\$000 - \$00°	$-\infty$ 20		-,0005	1005			-,0014	L100 600.	1000'- 800'	2002-2005	8500	008 - 000 S	1	100:	980	9/00/-	0	-000	F.000-1
	Hass Loss	(grams)	-,003	1000	.020	-015	.020	ر ا		200	3	001	2005	001	δ.	8	9	8	8	800.		100	200	4.008	482	S R	88	4	\$	8	8	S	8	900
	Apparent Emissivity	(-)	8L.	8 €	j	۶۲۰	2L.	ė		1	1	١	1	١	85 5	25	1	.85	છં	φ		5		١	١	١	١			١	١	.92	92	J
11 000	Midplane Temperature	(• F)	1930	SP-PA C)LPA	١	2020	1480	1950		140	1	()460)		1	1920	1930	J	1990	1960	1920		09[]	1	(970)	1	١	000	200	96	١	055	850	18:10
10.7	Assumed Emissivity	<u>-</u>	Ŕ	-					,	ە_ س		_			, 28			_				265	:	-	-	-		7.0	0.0	-		_		-
Surface Temperature TC-7	Value Range	(*F) (*F)	1840 1840-1950	0000 - 21-6: 015	1980 1950-2000			1		081-011 021	0281-0911 0811	OPE1-0811 0911	1780 1740-1790	COL1-0211041	1920 1900 - 1950	20 1900 - 1970	1940 1880-2020	1990 1970-2010	10/1450 -1990	020 - 026 056	-	05L1-01911 OIL1	1081-0011 OF L	92 1750 - 1802	0181-051 051	0191 - WILL (1810)	0711-C391 01L		00 - B - C	0102 - 026) . 081	0102 - 001/1 01	1990 19 10 - 2010	(10 1460 - 2010)	1980 (950-32)
	Transfer Coefficient Va		.83 124		o)	ا (د	0	37		500	-	1	5	5	450.0038 I	9	2	נפ	6)	b)		8500	5	=	-	5	-		2001	9.9	5		5	2
	Total Enthalpy	(Btu/1b)	5352	_				_		2 7 2 2		_			850		_					2590	-		-		-	7	ğ	+	-	-	+	-
	Stagnation Pressure	(atm)	158						,,,,,,	8 8 8		-			.0056					_		9 80				-	_	- 1	ġ δ					-
	Heat	<u>e</u>	9.61						9	ر ا	-		-		9.8							12.4						3	وف					
,	Exposure Time	(min)	280		_	540	_		1	2-2	-	270	-	_	540		_	720	_		1	220			و 9	_		1	70			900	-	-
	Cycle	'	2	. 0		9				ø-		772	i .		8		_	24				42		_	В		_		4)	_	_	Š		_
	Sample Description		TONG 60 A	96	Č	A5	à	62	- 1	TONCE S	6	NOM	B2	22	TDNICK GO AG	36	9	æ	98	(5)		TONICE 60 A3	A3	52	O.4	95			3 575	84	100	Ϋ́,	56	- 6.5
	Sample		و	_	8	(3	4	S	1	- a	00	28	Ç	و	و	ニ	03	13	4	2			œ	σ	28	ហ	9		و	=	8	13	41	J.
	Model		4							7					4				_			7							٨					
	Test		-	-						٥	-	-		_	۲				_			و	-	-	-				-	1				
	Test	- 1	1945			-				9		E			1946	_						1947						,	1441					_

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

						-				3	Sur	Surface Temperature TD-7		as Handra				
Test	Test Condition	Hode	Sample	Sample Description	Cycle	Exposure	Heat	Stagnation	Total Enthalpy	Transfer Coefficient Value		Range		Midplane Temperature	Apparent Emissivity	Mass	Dimension Change	Comments
		_				(mtn)	(Btu/ft²sec)	(atm)	(Btn/1b)	(lb/ft2sec)	(•F)	(*F)	<u> </u>	£	Ξ	(grams)	(tuch)	
1948	8	7	19	A 50 37 17 18	و	8	(20.02)	1900.	809	6080.0033	2100 20	2060 - 2180	.85	22022	172	040	2000	
+	1	1	20	8	<u></u>			_				OL12 - 0112		1	1	350	- 0006	
+	$\frac{1}{1}$		2	7	-			-			2150 21	2150 2130 - 2210		١	1	040	9100	
+			22	¥	00						12 0112	0222 - 00		(20502)	1	049	- 08	
-			23	æ	83					`	2300 21	2200 2100 - 2210		ı	ſ	.045	700	
\dashv	1	-	24	9			_	-	7		2160 30	0612 - 08			•	950	0022	PYB 23-0"F
0	- 1	-	!		\downarrow													
9-	<u>0</u> -	₫.	E :	CONTED GO GO A!	۔و	081	4	8	0160	0,910 .0040	22.30 21	2190-1300	Ŕ	2460	29	-,043 -,0006	.886	
+	1	1	3	6				+	+			50.23		2410	ه ا	-,0460014	8	
+	+	1	ઉ	4	2			-	+	,	2280 22	2240-2310		1	١	0280026	0026	
\dashv	1	1	8	a	70			-				0122 -0112	_	2520	149	050 0028	.0028	
+	1	1	3		7			1			2280 2	0552-0127		١	,	4,001-1550-	4	
\dashv	1	-	9	8	88	_	-	-	1		22 0872	2280 2200-2300	_	2390	٥٢.	- 061	0100:	PYB 2510F
040	ō	6	75	,		20	(a) (a)	6700	1000	_	200	00.6	20	0,00	5	9	(
}	1	J-	2 /	TANKE BO HA	9-	2	60:00	3	2000	†	200	2000-0012	ġ-	0/17		10	1.887	
+	1	+	96	1	4				1	+	2120 21	2160 2120-2190		1	1	-045	1.888	PYB 2350 F
+	+	\downarrow	200	5	1	-		1	1	``	20812	2190 2150 -2700		1	İ	.048	1100-	
+	1	1	27	A A	2	8				` 	2180	2160 2140-2190		2130	ģ	1022	-,0004	
+	+	-	52	88	20					`	12 0612	2140 - 2200		١			1000	
+		$\frac{1}{4}$	42	87	-	_	-	_	+	_	12 0812	2150-2210		١	1	970	500 - 670	
010	3	_	4,		\perp	7	()	0,725		- 1		-	ļ		-			
	1	7)	CONTED CD GO AI	1	8	430	20-	ğ	2000	12 06.22	-4	a 1	2460	ĺ	8	- 200	
+	1	+	9	ici .	-	-			+	2	20 27	0152 -072 0132	1	0242	9	250	0003	NB 2530 F
+	+	+	0	AZ		1			1	7	20 27	0)52 - 03	+	1		8	2000	
+	1	\downarrow	30	29			1	+	1		2190 210	2190 2150-2210	+	2520	5	- 82	-80	
+	1	1	9 7	2				1	+	2	22:00 23	0-220	1	١			7005	
\dashv		1	5	4	_			+	<u> </u>	- 1	200	0152-0522 052		2150	٥	.83	-,000	
950	b	2	25	M. C. Co. M	12	260	13.4	570	0007	1200	200	010-0800 0010	20	2220	4	100	7	
_		_	16	1					2			2 2 2	Ť)	9	5 5 7	9	
+	1	+	96	200			1	1	+	7	200	0617-0012 0017	1	1	١			
\downarrow	1	+	ئو	35	- 1		1		+	2	77 04	0177-0		1	1	100	-	X13 2240F
1	1	1	100		2-	2.	1		+	7	3	0L12-0h		1	J	10001-010	000	
1	1	+	22	24	1			+	-	2,7	27	Ob12 - 0		1		020 - 020	9700	
$\frac{1}{2}$		_	4	روي ا	-			-	-	2.	17 01 1	101-17-06		١		2000 - 050·	2000	

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

				Cumulative	Cumulative					Heat		Surface Temperature TD-7	7.0.					
Heat Stagnation Flux Pressure	Model Sample Exposure Heat Stagnation Cycle Time Flux Pressure	Sample Description Cycle Time Flux Pressure	Sample Exposure Heat Stagnation Description Cycle Time Flux Pressure	Exposure Heat Stagnation	Heat Stagnation Flux Pressure	Stagnation			Total Enthalpy (Transfer Coefficient Value	Va lue	Range	Assumed Emissivity	Midplane Temperature	Apparent Emissivity	Mass Loss	Dimension Change	Comments
(min) (Btu/ft²sec) (atm)	(min) (Btu/ft²sec) (atm)	(min) (Btu/ft²sec) (atm)	(min) (Btu/ftisec) (atm)	(min) (Btu/ft²sec) (atm)	(Btu/ft²sec) (atm)	(atm)		8	(Btu/lb) ((lb/ft2sec)	(*F)	(*F)	(-)	(* F)	$\widehat{\cdot}$	(grams)	(inch)	
10 4 65 CAMED CD 60° A1 18 540 42.0 .0068 11	65 COMPED CD 60° A1 18 540 42.0 .0068	CONTED CO 60° A1 18 540 42.0 ,0068	CONTED CO 60° A1 18 540 42.0 ,0068	18 540 42.0 ,0068	42.0 ,0068	9900			148	. [203.	2270	2140-2240	.85	2440	49	.122	0008	
18	18	18	18						-			22A0-2320		1400	٥٢	350	- 2012	
(67 A2				2							2300	2270-2520		١	1	-,005	900	PYB 2450 F
								Щ.				250-2200		2490	.52	83	688	
											2270	2252-2290		1	1	. 362	. 885	
65 1 1			85				\dashv	+	_	-		220-220		2420	કુ		- 000¥	
2 25 00/6 60	2 25 POLG W AG 18 540 25.1	25 TOY CF 60 A9 18 540 25.1	60 Ag 18 540 25.1	18 540 25.1	75.1	T	.006	┿	1040	choc.	2110	2080 - 2150	.85	2250	88	150	0008	
26	26	26	2		:						212	213-226	_	1	1	1050	-,0012	
5)	5)	5)	5)	1				H			2200	2170-222		١	1	043	-,0004	다 2년 년 -
027 AS 8A 22	A8 24	A8 24	A8 24	24	021			Ц				250-220		1	1	420.	-,000	
								_		-	2180	2160-220		1	1	8	0	
											2180	2160 - 2220		1	1	.029	818	
8900, F.84 OST 45 14 80 43 CD 4 61 OI	(2) CARED (2) 60° A1 24 720 43.7	[CARED CF. 60° A1 24 720 43.7]	7.50 43.7	7.50 43.7	43.7		8983		الماما.	1500.	2310	2310 2190-2370	\mathcal{Z}	2420	۶L,	414	, 1	
CONTENTS 60 NA 6 180	CONTENTS 60 NA 6 180	CONTENTS 60 NA 6 180	6 185	6 185				:			2120	2090-2140		1		· 204	1.000	- 1
12	COMPEDICE 60° AZ 24	COMPEDICE 60° AZ 24	12	12				-			2270	0312-0411		1	1	8	0002	PYE 2380°F
P2 24	F2 28 1	F2 28 1	24	24			\dashv	\vdash			290	240 250-2700		2480	Ŷ	90	1.608	
CORTEDTS 60 MA	CONTENTS 60 MA 60	CONTENTS 60 MA 60	9,	9,	180		-	+			2280	2280 2240 - 7.200	1			20	5000:- 661	TAB MISSING
021 42 68 69 43 Black	भूते हुई छें की तमाना	भूते हुई छें की तमाना	3	3	1.00		-	+	+	-	222	0767-0677	_	24.20	3	750	- 000 - 000	
0 2 25 mon or M 24 720 25.7 5 0000	25 TONICK CO. HA 24 720 25.7	TON. G. M. 24 720 25.2	60 Mg 24 720 25.2	24 720 25.2	29.5	Ť	00	+-	6320	C400.	2110	2110 2010-2160	.85	とこの	ררי	.044	10001-	
69	64	64	69								2140	2140 2110-2170		1	1	976	8	
67	67	67	_	_			\dashv	-			350	2170-2220		١		Ş	.0023	
25 NS OC	K8 K9	K8 K9	В	В	900			+	-		7,80	2180 2140 -2220	1	1	1	650	8	
			668				+	+	+		8	2100 210-2700	1			\neg	8100	7 0175 GY
-	-	-	87				-		+	1	0017	210-2510		1		.044	000:	
_	TT CONTENT CD 66(2) 6 180 42.8	CONTED (15 60 180 42.8	6 180 42.8	6 180 42.8	42.8		1985	1-	1,330	858	2330	2330 2250-2340	.85	2420	'n	5067	001	
12	CORTED TO 40° NA 12	CORTED TO 40° NA 12	12	12	360		-	-		_	218	2050-2140	1	1		120	9021	
CEMED CO LO AZ 20	CEMED CO LO AZ 20	CEMED CO LOS A? 30	ģ	ģ	900			\dashv			2240	2210-2290				-,84	0.8	
62	62	62	_	_			-	\dashv			2160	2160 2140 -2200		2450	55	8.	2100:-	
]6 C2 6 (80	C2 6	C2 6	9	9	8		+	+	+		355	2260 2200 - 2270		1 2		8	5/8	ME 250 F THE MISSING
						_	-	\dashv	-	-	002	222-222	-	0	ē	1.044	1000-	

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

											ľ	Surface Temperature	1					
	Test	,	, in	Sample	<u></u> و	Cumulative Exposure Time	Heat	Stagnation	Total	Transfer Coefficient Value	Ya Jue	Range	Assumed	Midplane Temperature	Apparent Emissivity	Mass	Dimension Change	Comments
•					 !		<u>()</u>		(Btu/1b)	(lb/ft2sec)	(°F)	(•F)	I		<u>:</u>	<u>=</u>	(1nch)	
953	9	7	8	COKTED CH 60 E1	T,	50	78.4	4900	05-50	30.00	2180	2160-2230	.85	2420	יל.	040.7	7.00.3	DY8 7360 F
	_		79	13		_	_		_		_	2170-2210		١)	3	51001-	
L			8	23							38	222-0122		2420	٥	8	7.835	
L			<u>ં</u>	3		_					-	2160-2220		1	J	250		
Ĺ			82	25							2240 7	2027-2022		١	ļ	1,056	_	
$oxed{I}$			83	છ	-						2300	2500 2200 2500		١	[F.061	1.324	
	_1		٦			1		\neg		_								
1953	9	4	F	COMMED GO GO CE	7	3	4.8	2965	<u>₹</u>	10,640 · 0039	8	280-1320	E	240		, 202		TAB MISSING
1				COMPED TO GO NA	0	540			.	_	30,	2000 2050 3050	-	١	1	F.884	<u> </u>	
Ц			Ē	CORTED CO 60° AZ	3	080			-		2210 7	2190-2220		١	1	410	1000	
-				82						+	2140 2	2100-2160		2420	ĄČ	8	8	CYB 2430 F
_			٩	22	2	8			_		2220 1	222-022		١	j	800	7,00,7	TAB MISSING
Ц			75	10	-				1	-	2210 7	2190-2250		2430	95,	90	1000	
										- 1								
954	0	4	8	MATED COUNTY	ι,	20	C: 44	9908	3	648	2240 2	2240 2190-2290	ġ	2425	ė V	-032	-0320018	CYB 2290 F
H			85	7.5					-		2200 ;	2200 2140-2260		1	ļ	9.	41001-10014	
			8	73							1320 1	2320 2220 - 2340		2440	٦٢.	048	L100'- 840.	
Н			8	¥ڌ							2190 12	2190 2130-2380		1	1	015	0200-510	
			88	72							2250 12	1190-2200		l	1	F.050	-,050-0015	
Н			89	K3			-	_			2320 1	0362-0812 0762		١	1	1.00	L100'- 150'	
								\neg										
1954	9	4	1		8	540	40.3	38	11,020 .0037	_	2210 2	2300-23350	ο υ	2410	ţ	61.0	9	CYB 2300°F TAB HISSING
_	Ţ		F		24	720		_	-		2120 1	2020-2170	-	1		o E	-,0004	
			5		75	00,2					, 22,22	2212-0120		١	1	1027	4000	
Н			68	B2							240	2002-2012		2420	な	0	00J	
			اروا	0	ō	540					7270	250-2250		١		<u>8</u>	80.0	TAB HISSILX
Н			15	ا د					4	-	2220	2200-7740		2410	29	0	5000	
	- 1		T					$\neg \tau$		T								
1955	9	7	$\overline{}$	COMTED CO WOOD	-1	'n	4.0€	.006F	8	11,000 .0036	2250 2	2250 2250 - 2210	.85	2410	Ś	2005	2100-020	
				23	1				_	T	2510 2	2210 2190-2250	-	1	1	8		
4			92	R				-	+		2260 1	2260 2260 - 2270		2380	ê	1.051	F.0014	PG (2030°F)
-			53	Ī	1						2210 2	2170-2220		1	1	1.03	1000	
			46	E2							2240	2240 220 - 2250		1	1	1.001	8	
<u> </u>	_	L	965	7	_	_			_	_	38	2280-2310	-	1		+.052	F.0005	

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

	Comments				RYB 2300 FF					•					7°0962 4 PVB 240°F		TAB MISSILXF					PYB 2470°F							(2100"F)						PYB 2350°F TAB HISSING	
	Dimension Change (10ch)	(IIICII)	1			-				-0009	רמסס,-	5000-	2200	-000	4000		F.801	1				9000	ļ	8000-000-	9100-850	9					1			_	200 - 000	1
	Mass Loss	(all all a	1					L		0.0				5,0	50		.212	j	_		_	901.		9	350	950	1	_			i	-		-	B	1
	Apparent Emissivity	Ξ	٥٢٠	1	1	, K2,	j	79		7	•	1	1	1	1		5	1	J	₹.	1	59	-	9	1	و			1		و.	١	1	r. Sr.	1	١
To I Landon			2410	1	1	2410	١	2410		2490	-	1	1		1		2420	1	1	248	1	2410	,	2520	1	2410		-	l		2340	1	1	200	1	
		1	.85		 					30	-	_					\mathcal{Z}						1	à			_				ei T					-
Surface Temperature TD-7	Range	(4.)	0162 - 0322	2110-2130	2190-2230	2110 - 2150	2110-7240	2220 2200 -2230		2210-2250	2170-223C	2240-120	2140-2250	220-2260	0162-0067 0065				0122-0912 0022	2-0C12	220-cm2	2210 -		2240 2280 - 2240	2210 - 2260	0522-0922 0122	M27 -0122 CZZ	C122-0L12 01512	23/00-2310		2150 2110 - 2232	2140-2190	CXX2 227 2522	2190 2140-2200	0352-0222 0052	25co 2520 257CT
		ĵ.	882			2130	2220	2220		2230	22/0	2270	220	2240			2,53	218	2200	32	7520	222		2240	2240	2210	22	2160	23/00		250	0817	2288	, 0612	325	5367
	Transfer Coefficient Value	5 J	8					-		5600				-			4500							5835								-				
	Enthalpy	-#	10,910	-						5600.05801 5900	<u> </u>						+ -								-					·	- 12820 10543					_
	Stagnation Pressure	(at)	286	•					-	5900		-					0160 2900						,	0067 12500							1872					_
	Heat Flux	(Btu/ft*sec)	ار ال							38.4	· -				-		51.0							13.1				_			5. 5.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	-				
	Exposure Time	(min)	8	180	1320		ξ			20	\ 						099	840	1380	_	3			8		_	012	Я			120	930	(A10		750	120
	Cycle		8	7,7	4.4		20	_		<	ł	-		-			22	87,	9	_	22			4			٦	ત			4	31	ā		25	4
	Sample Description		Charles to to C3	AN '09 STUTTED	COSTETE TO GO AZ	82	72	ē		MORTED CH GO'U	3	123		100	7.		CONTED Ch wo CO	Crated Ta 60° N4	"CATEL Ob Go' A?	62	7.7	12		COPITED OS 60 L1	27	<u>دا</u>	CONTED TO GO MA	ŝ	ζ		CONTEDTO GO (5		MATERIA GO A 2		77	COMPETE 60° C4
	Sample		5	7	Г	Ī	اح	ß			6	Q Q	a D	2	Ō		רר	F	(5)	l		15		102	103	40	_		33	П	1		وک	Ī.	و	73 (
	Mode 1		4	-	-	L		-		2	·	_					A							7					L		4					
	Test Condition		0	L						9	<u>-</u>						0							0							0	_	- 1			
L	Test		38	_		L				200	-	L	L	1		L	A56	L	L		L			1957		L.					1926	_	_			

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

Γ		_	Γ	T		μ	Г	Γ	Τ	T	Τ	T	T			Τ	Τ	T	T	7		Г	Τ	Т	Т	T	T	Т	7	7	_	_		П	-	г	Т	Т	T	7
	Comments					1 (0807) SW SMISSHI GWI		TAB MISSING				Γ	4 (0117) ely										PYB (2670) F	ł				- [3 (01 52) 914		TAB HISSING	1							34 (2470) PE	
	Dimension Change	(Then)	1.00%	4	35	3	1,887	8	-,000		100		200			00%	1200- 510-		0	9	,000,	2002	50005	1				1000	824	!	1807	1	-		[_				
		(grams)	1,09	7	9 6	ا <u>و</u> د د	8	$\dot{\delta}$	1.05		1,051	0		022	-092	023	-,093		1	2	20	-018	200	١	_				22,	, ,	520	١	_		1	_			_	
	Apperent Emissivity	(.)		_					_					-			-												-				7							-
	Midplane Temperature		١								(20202)							-	(21.20)	7	1			_			100,0	1	1			+		10,20	188	-				
re TD-7	Assumed Emissivity		22						-		.85		-					_	20	Ī	1	+					ก็ล		+	+		†	1	96	ì				_	_
Surface Temperature	Range (*F)											_								-								-												_
	Value (°F)		0177	588	(COZ.)	200			000		(25/20)	(25.0)	(2580)	(2420)	2000	200	(2500)		2540	2000	70	2,00	250	2550	(2520		2520	1520	(1934)	3 7	300	200	+	755	27.5	622	(0642)	(2)	(0252	9
1	Transfer Coefficient Value (1b/ft²sec) (°F)								-										1	-											1	1	-	1		7	7	1		-
	Total Enthalpy (Btu/lb)	1		-			-	1	1		(28,400)				+	+	+		(24,920)	-		#	+				(84.7w)	_		-	-	1	_	1	+	+	+	+	-	-
	Stagnation Pressure E	o	5					+	+	1)(cap)						+		10000			+	+				.0061 (2							1900			+	+		_
	Heat Flux (Btu/ft²sec)	١															1			_		†	+		-		١	_						1	-	+	+	+	+	
Cumulative	Exposure Time (min)	Ž		3	200	_	240	160	1		0						1		ጸ			+	- 0	2	_		'n						+	3	Ş	35	8 %	3,	2 -	
	Cycle	R	20	26	2		α	7	1	L	1-	-		_					-4				,	•	-	-	4			_				7.	_	6	4 <	1,	1	1
	Sample Description	MONTED TO LASTE	7.	2	DETELO CO 60° AZ	85	MATEL 19 6 HA	P			שאובה וש אם בש	2	য	R	1	417	72		CONTENT TO A	Y.	77	ī		5	52		CORTED TO 60° EA	E5	64	8	44	7		COMPLED TO 60°E4	77		3	1	+	154
	Sample	74	Γ	T	Т	89				Г	5	<u></u>	?	4		118)	T	7	3	125	126	72	1	•	T	T	22	12	و	<u> </u>	120			(23	Ī.	70	12	5	1
	Mode	4		F							_ٰـ							,	1				Ì		+	6	j		+	-				2	_		Í	+	Í	1
	Condition	01 1	L							01	:							2	1							9	1							21						
	Test	1959		\perp	1	1		_		10/2/	-	+	+	+		_		1	9-	1		_	-	\vdash		2	196	+	+	+	-	_		963	-	L	-	H	H	\mathbf{I}

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

	Comments	7° 0° 2710° 6°F	J*(0355) BYO	PYB (2560)°F TAB HISSING	크.(0152) 영지	NB (2620) F
	Dimension Change (inch)	8 (8) (9) (9) (9) (9) (9) (9) (9	1	1 000 1		000.08
	Mass Loss (grams)	175. 175. 175. 175. 175. 175. 175. 175.	1	1.103		gcr.i
	Apparent Emissivity (-)					
Rackwall or	Midplane Temperature (°F)	(2600)	(2640)	(œnz)		(1690)
	Assumed Emissivity (-)	Q	8	58.	Ĉ.	.85
Surface Temperature TD-7	Range (°F)					
	Value (°F)	(25%) (24%) (24%) (24%) (24%)	(3510) (2510) (2510) (3510) (3520) (3520) (3580)	(250) (250) (250)	(25.0)	(25.20) (25.20) (25.00)
3	Transfer Coefficient (1b/ft²sec)					1
	Total Enthalpy (Btu/lb)	\	(24,900)		(wr. 42)	(da
	_	0980	990	5 8	1,000	(MB,P) COOC
	Heat Flux (Btu/ft²sec)				1	
	Exposure Time (min)	63536	8-685	8 860	90000	200
	Cycle	WC1 WC1W-	4 m-14	2 -4 ~ a	בוונחשח	→ C →
	Sample Description	CATED Ta 60 C4 (64 F5) F5	20/16 Ta 60' A4 A5 B5 155 155	24 - 44 - 45 - 45 - 45 - 45 - 45 - 45 -	CELUTS 62 A4	CARED To 66 A4
	Sample	1124 115 117 117 120	1227	3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	155 109 108 108	8025
	Model	C1	7	,	7,1	79
	Test Condition	2	2	5	21	r. 3
	Test	3	59.	3	5	<u>ප</u>

TABLE 3 TEST SAMPLE RESPONSE (Continued)
METALLICS

Comments	746 HISSING
Dimension Change (inch)	1.020 - 0004 1.055 - 0004 1.040 - 2004 1.004 - 0004 1.004 - 0004
Mass Loss (grams)	0200-
Apparent Emissivity (-)	
Backwall or Midplane Temperature (*F)	(257)
TD-T issumed ilssivity (-)	B
Surface Temperature Range (*F)	
	(7520)
Heat Transfer Coefficient Value (1b/ft3sc) (°F)	
Total Enthalpy C((8tu/1b)	(30 102)
Stagnation Pressure E (atm) (
Heat Flux (Btu/ft²sec)	
Cumulative Exposure Time (min)	252 253 253 253 253 253 253 253 253 253
	σ_{ω}^{ω} σ_{ω}
	CONTED Ta W NA
Sample	00 LOLOIL
Model	7
Test Condition	2
₁	

•

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

					Cumulative				Heat	Zer _	Surface Temperature TD-7		Backwall or	Annanan		Dimension	
Model Sample Description		Sample Description		Cycle	Exposure Time (min)	Heat Flux (Btu/ft²sec)	Stagnation Pressure El (atm) (B	Fotal Enthalpy (Btu/lb)	Transfer Coefficient Value (1b/ft²sec) (°F)	Value (°F)	Range (°F)	Assumed Emissivity (-)		Emissivity (-)	Loss (grams)	Change (inch)	Coments
1 CAL DIE 1950 C	U/C 1977	н	17	9	280	20.00	3 2100.	2,53	12 cm . 0044	22602	2260 2130 - 229C	17.	3		.274	007A	1 1
3	3	3		1				_		282		_		78			PYB 2130 °F
139 (I-1500 PE)		1-1500 tm	1							26.00 2	212-0512	35	910		3	1	
$\dagger\dagger$	(609)	1809		1 1	0	5	-		A.A.A.	200	2200 2110 2210	Q	2		0	9000	
4 122 D.C KWH B	122 DC CC	STAND DE	3	9-	2 - -		8	3		2000	200	5-		1		3	PYB 1930°F-
142 IT-150 126-1		9781051-1	-							2420 2	2470 2280-22AQ 2520	Ž	740		b92.	2520'	
יין אין רצו כ	+++	90	1	-	24	0/8	. 061	74 500	98.00	2600 2	510-2610	51.	1350		1		
	+-	3		1-			1 1			2520	2520	1					
140 II-1500 II G1		T-1500111	5							2962	2550-5050	ž-	1	.24	92.9	١	PYB 3300°F
- 137 HCF 180° 6-	1 1 1	15t 180 6	-	rv-	521	4 7.	7900	05/1	0400.05/11	2190 2	2050-2190	5	(220)		1	1	WATER LEAK
1-9 51-17 21		45 (COS)-I	-	-4	5					2510 2:	2510 2340 - 2520	35	3	02,	ı]	PYB 2800°F WATER LEAK
-3 88 HCF 180 6-1	981 J2H	9,081 271	-	1/2	360	0.08	1900	0989	-1400	31 00151	0007-0681 00101 7400.	ch.	810		דרסי	4000	
+ †\	1	T.\50.386	7	_e_	180					2027	22.50 21.00-2.380	-%-	220	10	E 41.	JL10.	7 0012 aki
-	- AB			2	7	74	1700	(XQ)	0×0)		2080 1980-7100	285	820		950	028.0002	
135 SIC FORM \$28	\neg	AC FORT	23	_i1_	000			3 +	3		2050	75.		.81	540	.0028	PYB 2050°F
1 a ag (2) C1 - 7 L1		00 A								2160							
2 127 LE1500 56 11-18	\neg	1-1500 56	=	4	50	(821)	.689	6100. 00511		2470 2	2470 2550-2510	58.	1420		585	०,०	
128 15-1500 2 11-18	2 051-11 371	2 0051-1	13							2480	2480 2340 -2530		040	<i>i</i>	0.5	2210.	PXB 2560 E
	-	-												ĺ			

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

1	ents																											
	Comments					PYB 2360°F		DYA 7140°F	ł i		1 1	10000			NA 2160°F				PYB 2000 F				J.0812 920				PVB 2050°F	
	Dimens fon Change	(1nch)	J.5.7	!	98		Dog .	3	2000.		5010	15007 950		,	9000	o		0100		.0150027		9000		000,		0.00		10 to
	Mass Loss	(grams)	.296		ف			5	970		035	o c			ن د د	989		010.		215		85		.159		090	4	100° 100°
	Apparent Emissivity	3			ļ	ċ		17	1.1-		,	2			67.		-		.83	1			.5				ģ	
Backus 11 or	Midplane	(a.)	1180		590		03	3	2/0		940	25	>	(/5)	9	520		860		32		910		580		900		180
£ 10-7	Assumed Emissivity	Œ	35		i		Ŋ		35	_	58.	46		50	-	$\hat{\mathcal{X}}$	_	, 85		20		77.		Ŗ	_	.85		ž
Surface Temperature TD-7	Range	(°F)	2440-2520		2290-2420	2340	1000	3000	2190 2110- 2200		0112-096	0000-0110	7 7 7 7	0001-000	المال المال	2100-2210		2010 1950 - 2110		2300 2160 -2540		2020 1950-2050		2120-2230		2000 1960 - 2093		0787 - 1812 0182
	Yalue	(°F)	2510	2510	25,70	2340	000		2190	2140	2673	77.70	2160	0001	1940	2200	240	2010	2000	230	द्धारी	2020	الأف	0912	1.00			0162
4 - 01	Transfer Coefficient	(lb/ft2sec)	.0055 2510			-	S. A. C.			_	.0049	-	_	- 140¢	2		-	.839		+	-	.0047			1	3500	,	
	Total Enthalpy	(Btu/lb)	בטניצו	-		\exists	700			-	838			4121	2		_	2002	_			2850			1	7300		
,	Stagnation Pressure	(atm)	0 [89				0 700	2			1,00			0 120	2			1000				/Lco			_	1,5,801		
	Heat	(Btu/ft²sec)	1.01			_	22 A	 - -			<u>ال</u> ا.	-		2 4 4	_		-	5.82	_			215			-	25.3		
1	Exposure	(mtn)	150			_	210)	360		540			700	3_	540		720				900		220		000		
	Cycle	'	S			_	Q	>_	27	-	03	-	$\ \cdot\ $	24	ر ا	8	-	4.				ઝ	_	24	-	30		$\overline{+}$
	Sample Description		81-11-000-11-IS		81-11 80051 TI 06/		17 (19, 9 / 1.1	100	1-1500 180° 6-1		SIC FOATIBOS-	1-1-000 14-11		1-1000	1 00 00 1	1-9°08' 00-1-1J		Si C FOM 191 5-22		1-1500.160,0-1		HCF 120° 6-1		13-150 180 6-1		Si C FOAH 180 8-34		17-1500 180° 67
	Sample		129		20	$\frac{1}{2}$	ě,)	144		Z	147		75/	3	144		35	- 1	142		35	$\overline{}$	144		35		142
	Model		4			$\frac{1}{2}$	2	-			4	1		6) -			4				2			1	4		$oxed{I}$
	Test Condition		0			\exists	E C				Ø			D	1		\int	a	_	$\frac{1}{1}$		6				d		
	Test		19.74	H	4	\dashv	210	}	H	4	1975	+	H	147/1	+	H	\neg	9	+	+	-	1977	\dashv	\dashv	-	1977		+

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

	Comments		1 1	We Can F			246 75 10F					PYB 2960FF				J.0527 9Kg		ם, טנטו ריאס	1	PY6 2280'F		3000 L-NJ		PKB 2480°F		PKB 2040°F	4.008 F.W
	Dimens ton Change	(inch)	0023	רפיט	\		3	\$24		8100	1 cm	į		1.200	0023		,0,0	5.5	-0135		-0065		2590133		0100,-		- 000
		(grams)	1.12	797		,	C	1202		280	2400	3		40	100.		3	3	ģ		112		.259		036		(c)
	Apparent Emissivity	<u>:</u>		È			35					1.				ري.		7				.43					97.
an Hampan	Midplane	(•F)	1020	0.0		- 2 / 6	1240	080		1110	150	2	Ì	500	3			3	180		1130		910		840		8
L-OL	Assumed Emissivity	(-)	715	. h	-	72		Ś	-	75	7		1 (, ,	Ė		7	<u>.</u>			Š.				315		
Surface Temperature	Range	(*F)	1800-2130	7370-252		1000 000	026720612	C122-0812		0127-0212 0027	020-020	2380 - 380 - 634		25/0 2400 - 25:20	2150-2280		10-9	0012	2040-2390		0040-000	2400	2410 2320-1430		2190 2150-2220		2150 2120-1140
	Value	(•F)	2/50	27.40	230	į	C X 5	2250	2220	2200	27.00	2380		2510	3	2170		36	23	2130	2400	248	2410	7362	2190	2190	252
1	Transfer Coefficient Value	(lb/ft²sec)	0400	-		0	2700 00 00 D	!	-	8500.				(97,00.)			0	2600' OCAL			(1.00.)				9500. OPLP	1 [-
	Total Enthalpy	(Btu/lb)	02411				00			11,850	+	+		0920			700	26-			3370	-		-	OPLA	-	+
	5 +	(atm)	F980:			-	٠ ٥			6900	 	-	П	8-			1	3			2100	1		_	2900		\blacksquare
	Heat Tux	(Btu/ft²sec)	45.2	-	_	,	<u>9</u>			45.5				26			7	F : 10			26.7				35.8		
	۳ ع	(min)	180			7	2			360				210			\neg	2			8	-			360	-	
	Cycle		e	+			-		-	12		-	1	<u>-</u>	_			9-		П	1	-			2)		\blacksquare
	Sample Description		1-9 .081 JOH	17-1500 100 6-1	× 211 1	0 1 0 0 1	08/00/1-1	30 II-1500 B 18811-8	-	HE180 0-1	1-1620	200		11-120 is IFB	LI-15003 (B) 11-15		10.0	12-21 00 1 2-21			10-01 BN 19-21	3			HCF 180 12-21		
	S. S		145	146		1,7,7	5	051	$\frac{1}{1}$	145		9	Ιí	62	8	_	1	-	148		.Δ4	Τ	05/		147	Ħ	40
	Model		2		$oxed{\Box}$	ļ	1		$\frac{1}{2}$	7	f	$oxed{+}$		4	I		r			Ц	4				2	H	\parallel
	Test Condition		01			ľ	2 -			0		-	டப	0	-			2-			9	1			0		
_	Test		816	+		0.70	<u>م</u>			प्रमु	$\frac{1}{1}$	\perp		5	\pm	Ы	9	2		\prod	1980				1991		\pm

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

				_							_	_				_													
	Comments		PYB 2350°E		≥ 0105 r.)A		CYB 2110°F		7.00pl L-X		763 2310 F		PY-7 2400°F	7.08LI 1-M 7.0502 8M			100 100 100 100 100 100 100 100 100 100			30171 1-70 The 200			20 20	4.0191 1-61 - 100 GL				,05061	
	Dimension Change (inch)	P 210 -	3	1.862		0140	<u> </u>	0146		4210-151-		1-0121		w27	865	280		0200 - PAK	.0002	91015	Ti	5000:- 910	1	001	8	1000 -	P100	PZ 00,	Š
	Mass Loss (orang)	191		50		1007		240		151.		560	_	580,	1251	550	300	2 0 V	040	2	064	0		10	4	و 1	820	054	0
	Apparent Emissivity				14.				.44				۲4.	h2./			C. K. /	36.7		722	4		1	5				44.	
-	Midplane Temperature	0151		25		430		832		1200		1240		960	0221	570	200	200	510	525	193	5-10		027	257	<u>2</u>	1020	1140	- (·
6-92 0	Assumed Emissivity	75				75	-		_	75			-	٦.	315	.83	36	25	.83	ر ا	1/2	50	7	5,5	2	202	135	ij.	2
Surface Temperature TO-9	Range	22		0152-0652	05/2	2/80-7530		2220 21/10-2390	,	2310-2450		2310-2450		2/20-2170	2410-2550	2020-2150	30. 0.00	7540 7510- 2540	W10 2050- 2270	7160 2120 -2180		2502 2040 - 2069	0	000 000-000	CC C7 - 0+67	11.32 1940- 20x1	2150 - 2203	C1.52 - OC12 C6.52	10116 Sheet
	Va lue	19 (2470	2480	05/2	7210	2200	2220	202	2420	2120	CK.72	C162	2160	2530	2003	27.0	7540	<i>ندئ</i>	7.00	2017	355	,	8	0	((3)	2190	ce 27	1111
1	Transfer Coefficient Value	(207.9)				3600			-	(12001)			-	.0033			10000	117001		DO2C.	9 -			3			6850 . 00 AT	_	_
	Total Enthalpy	226	<u>}</u>		-	סררף			-	3,400	_		_	080	_		04/0	9 -		מילים	9_			5		-	685		_
	Stagnation Pressure	1,0	1			0.20		-	-	21.8			-	2980			6 700	Ť		6400			-	8		_	.0062		
	Heat Flux	(L L'Z				74.7	-			35.6)				32.4			2,0	, , ,	-	7	5			1.07		-	52,0		_
	Exposure Time		1			540	-		-	98			_	08)			o c			(1)/(3-		i	3		_	540		_
	Cycle	2	-		-	Q	-		-	e			_	و	_		,	9-		5	3		ŗ	7	1		α		_
	Sample Description	WE19,17.21				H/E 1977-21				HCF 180° 12-21			-	PET 120 124	10F 120° 12-9	1.150×120 12.9	0.0	6-61 -021 -127	153 12.15006 120 12-51	P. C. 120 K 7	HCE 120° 12-9	(55 LI-15006 120° 12-7		120 15 TES	HCF 120 12-4	17-1500 C- 120 12-5	PET 120 12-9	i I	1000 01 /200 1
	Sample	144	T	50		1 1-4-1		84	_	<u>r</u>	-	25)	1	153	154	155	- 1	072	153	2	15.4	156	$-\tau$	951		1581	153 p		
	Mode 1	4		_		2			1	4				2		_	K	T		r				4	1	_	2		_
	Test Condition	5) -			()			-	0			1	0			9	<u></u>		9	-		,	5	7	-	9		_
	is E	1861	↓	_		1997			_	780			+	983			1903	1		Yau	-		,	77	1		1985		_
								_						_	_			_		_	_			_	_				

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

		Change Comments (inch)			,0002 MB 1418 F	l'oo	, 3000 Page	0012 PKT 19CO FF	. P(L(L) -	1,000% PMB 7290°E	LYO LIVE	max 0x8 1910 E	2	3.00°	1 88 5110		1,001	- ms W-9 2200°E	DYG 5250.	2569 DOSI DV-9 75:20 PE	RB	ij 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	000		- and she		००० वर्ष	1-,0xxx=104-9 2540=1-
	ent Rass			-	ō	20.	550,	50.	0,40	010	1	020	i			-	ō	5	1-7	756	90-12	1	8 2	1	Г	.059	2ho!	- [
-	r Apparent		1	48	1	_		35			Ç		44		\dashv	\$		Q,	7	. [1	.85/		34	+			+-	17.
	Backwall or Midplane	Temperature (°F)	1040	1260	क्र	1020	(080	જુ	1040	1220	190	1020	1000	500	1000	0121	3	1280	880	1283	1010	3	500	3	1120	1030	()	850
	Assumed	Emissivity (-)	5۲.	135	53	75	3	82	J.	75,	.83	9	175	8	15	5	282	ا ارد ارد	35	280	-	,	7 7	,	250	-		.1 V3
	Surface Temperature	Range (*F)	2340-2130	2200-255.1	1460 - 2620			2037 2000 - 2170	0212-0406 0106	2220 2110 - 2200	1990 1950- 2050	000 - 514 c 5190	Ciclonic		20,10,20,0,00	1912/2012	520 TO 1020	2050 410 - 2010	2450 2210 - 2510	1820-1940	C122-202 OL12	200	00 00 - CALL COL			2170 JUNO - 2100		1 JINZ 0722
		74 (a)	•	2420	2000	01.7	212	3	0.00		1990	25	200	50(3)		-+	57.0	285	22	(96)	277.0		1	7	ΤŢ		1	J. 7.27.
	Heat Transfer	Coefficient Value (1b/ft2sec) (°F)	5600	-	-	158	_	-	4500	- }_		6700	-		1500.		-	00,00		0.152	3	() () () () () () () () () ()	2 2	-	5.00. CO1.	-	5100.0013	-
	Total	Enthalpy (Btu/lb)	CUEL			1500. arra	_		_ ,	}_		anab	-		8			7	1 1	5120		L	2		$ec{oldsymbol{ec{oldsymbol{ec{oldsymbol{ec{oldsymbol{oldsymbol{ec{oldsymbol{eta}}}}}}}$		5160	
	Stagnation	Pressure (atm)	1,500			1900.		-	8	, 		1.7			න පි		-	280		240	1	1	000	-	0111		0141	-
	Heat	Flux (Btu/ft²sec)	25.9		-	30.3		_	24.5	-		3	3		5		-	0.10		26.0		0	9		28.2		503	-
	Cumulative	Time (min)	020			220		-	0.61-	}_		2	}		200	-	1	080	}	8		3/ 5	Ç_		51.00		540	1
		Cycle	8		7	24		-	24	_		ķ)		3		1	3	-	2	-	ç	3	Ī	121		ø.	4
	Samole	Description	P-51 621 T39	HCF 120, 124	12-1-2000 120 12-5	PET 120° 12-9	HCF 120" 12-9	11-15006 125 12-9	P.C. 3.C. 770	HCF 120 17-4	1-120 % 120 11-1	6.6.	3	[]	P-21 021 130 75.	HCF 120' 12-1	15.3 12.500 120 120 120	1-4 061 977	1-13 al 10-1	C. (Crass 1900		5	1-9 05 -37	1-9 081 081-1	S.C FOLIT 180		HCF 187 6-1	17-1500 130 6-1
		Sample	1526	હ	53	53		500	150		الما	53	1	155	٠. ج	157	631	3,5	1 1	127	134		80	т	132		اما	141
		Mode	4		1	7		\exists	7			1	1		 ţ		-	0	-	4			2		-		7,	
	Test	Condition	U		-	0		\dashv	ď			G	Į.		۳	-		Ķ	1 1	N.	1		<u>^</u>		40	\dashv	2	$\frac{1}{2}$
		Test	585		$\frac{1}{2}$	1486			200	3	H	400			1987		\exists	1990		000		9	-		विवा	_	492	

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
CARBON-CARBON COMPOSITES

	Comments											
Center Post	Stagnation Pressure (atm)	5700.	.0065	8900	8 900	8 <i>90</i> 0:	8900'	6900.	8900'	1,000	∫ ,9 ∞,	8900.
Flux	Center Post (8tu/ft³sec)	(132)	(۲۱۱)	(48-1)	(44.8)	(48.3)	(81.4)	(43.8)	(9,8)	(84.2)	(34.8)	(94.1)
Heat Flux	Calibration Model (Btu/it-sec)	96.0 654	91.2 654	295 1.96	13.6 559	15,9 564	15,0 561	76.0 566	74.6 564	386 950	17.6 567	35 O.TT
\ \	Rate (1b/sec)		2.16 5900.	11.00.	100.	11.00.	([8	11,00	11200	ρ, Γ	الـ00.	1100.
Chamber			151.	<u> [2]</u>	15	85I.	S.	(S).	, 157	91.	- -	<u> [5]</u>
sge ithalpy	MB (8tu/lb)	7940	79.50	1010	1040	0 د م د	0	1050	9	1380	7520	0
Average Total Enthalpy	E8 (Btu/lb)	057	240	6240	0809	6210	6240	000	207	6150	059	95
Centerline	Total Enthalpy HF (8tg/lb)	21,750	21,700	050,81	52681	05681	14,000	19,000	18,950	14,000	19,000	526 81
	Current (Amos)	129	\\$ -	565	562	5 66	561	10 m	5,66	198	13	% -
	r Cycle	₽°°	7-	98 88	98,08	. 89° 68	2	30	<u></u>	5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	98.88	3 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00
	Sample Description	-B-1 180	-5-	1-2-	E4A-4-1 18	7-0-	A-4-1180 A-2-1180	2-0-1	A -A - 1 188	9 2-0-	2-4-2	E4A-1-1 18 PF-D-2 18
		88		- - 	+++	uda	5 E 4 A	1	EAA	82	- • 	111
	Samp	190		49	5.5	45	25.05	24	2018	4 8	96.	48
-	Condition Model Sample	2	4	N-	4	72	41-	12	4	N-	4	2
		2/8	2 2	井	1	131		=-	1=1		1 7 7	=
	Test	1948	18	<u> </u>	1999	7000	3	8	<u>8</u>	1001	7007	2003

TABLE 2 SAMPLE TEST CONDITIONS (Continued)
CARBON-CARBON COMPOSITES

•	Comments																																
Center Post	Stagnation Pressure (atm)	6700			. 0069	0,75	, G							, 864 90	0 % 5	1000:						8700		8					+	3900		9900	
	Center Post (Btu/ft³sec)	100			(43.2)		1						. 1.	(44.3)								(67.7)	-	1						(99.9)	1_	(101.0)	
Heat Flux	Calibration Model (Btu/ft-Sec)	77 0 649	1		71.5 558	-1	475 2.H				-		- 1	78.4 56)	1000	1.1			1		+	אש רפר	1	79.7 572					-	785 286	i	790 SU	
Air Flow		;	3		الم		- F						T	الرەن		1.8						1,00	3	1100						1500		100	
Chamber	Pressure	┸			851.	-	. 50						-	158	9	30	1		1	1		d	-	158		-			_	000	2	9.2j	
age othalby	(8t v. jb.)	_			7150		1120							9	-	5	1		+	 		300	+-	1250	<u> </u>	-			-	4	3	218	
Average Total Enthalby		(2007)	2070		0740		3		_			_		800		6/30			+	1	-	0 0 7	0110	0310			_	-	1	1 320	272	2009	
Centerline	Total Enthalpy HF	(al (ma)	18,120		18,925		18,925							18,950		18,950						0,0	0650	19,000						-	octa	18,950	
	Current	/Sd	55		583		563							265		200			-		_		9	8%					_		ر د	5,95	
-	n Cycle		7 70	- R	3600		2°	- 99	0	ું ઉ	.93	Ŝ	-	340 2	_	-	7 8°	60°	·3	ر ص	ŝ		8			ક	ı	્ટ જુ	É		3	340 12	-
	Test Condition Model Sample Description Cycle Current Total Enthalpy HF		10 2-J- X	E4A-4-6 10	C4A-1 30		0	EMI -1	000 1-3	DIH-S (4	DIA 1.5-16	DA 1.5 6		CAA-1 3		E2 61	EMI-1 6	E-1 6	S	-	5H8 W		C4A=1 3	E2 6	-	. 1	~	9 LHH		١,	C4A-5	C4A-5	
	Sample		9,	ر ا	15		211	29	411	175	3	(1)		72		180	ટ્ર	174		811	179		2	8	79	58	5,9	85	179	,	8	39	
	Mode	-	4	_	1		4		_			-		7		4	_						77	4	-	-	-	-		-	7	2	
	Condition	L	= -		=		=	_						=		=	_					1	=	=	1						=	=	l
	Test		500	-	4000		8				L	L	_	2002		5002							8	7000		_			\Box		8	2002	

TABLE 3 TEST SAMPLE RESPONSE (Continued)
SURFACE INSULATORS

	Comments	MB 2340°F	0/8 2380°F 0/-4 2510°F	PVB 2340°F	946 2580°E W.9 2470°E	878 2370°E PY-1 2110°E								
	Dimension Change (inch)	1000	882	0360006 092 .0001	1274 - 1004	5003								
	Mass Loss (grams)	510-	.005 .056	2007	2005 274	A50-1								-
	Apparent Emissivity	30	£4. √2.	38	.26	28								1
	Midplane Temperature (°F)	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0711	090	ULT P	1200								-
	٠,	8-	جر. يع	50	$\kappa_{\mathcal{X}}$	385								-
Surface Temperature - +15-7	Range	2200 2010-2210		2210 2170-2240	2000 2000 0000 2000 2000 -1300	2180 2150-2200								-
	Value (°f)	2500	2310	2210	2000	2180								
	Transfer Coefficient Value		900	.0059	3500	1900								
	Total Enthalpy (8tu/lb)	11 1	5160	73.6C	<u>17</u>	2/60								Ī
	Stagnation Pressure		.\400	015	1,530	0621.								
	Heat Flux (Atu/ft2cec)	8-0	- - -	30.6	29.67									
	Cumulative Exposure Time		120	720	900	400								
	Cycle	80-	24	24	0	<u>2</u> _								
	Sample Description	31 C GAM 180	WF 180° 6-1	32 SIC FORM 180°	138 HKF 180° 6-1	5. C FOAM 180								
	Sample	32.	84	132	138	35							†	
	Model	4	72	4	73_	4								T
	Test Condition	E-	<u>c</u> -	ū-	5	<u>r</u>								
	Test	266	500	545	19614	1994	\prod		+	\prod			1	†

•

•

••

TABLE 3 TEST SAMPLE RESPONSE (Continued)
CARBON-CARBON COMPOSITES

							-		Sur	Surface Temperature +C) = O	_					
				Cumulative	-	•		Heat	-		Ť	Backwall or				
Test		Sample	۰۰۰ ۰۰۰ و	Exposure	Heat	Stagnation Pressure En	Fotal Enthalov C	Transfer Coefficient Value	Yalue	Range	Assumed Emissivity	Midplane Temperature	Loss	Change		Comments
ובאר במותו וומו שמפה	a church	10174112520	;		ec)	(atm)		(1b/ft²sec) (°F)	(°F)	(°F)	<u>:</u>	(*F)	(grams)	(inch)		
C . 3,	271	170	ď	1	#	025 15 72700	#	744	37 0019	20.79m	28.	1410	217.62	COSAA DY	_	2430 %
+	011	PF-B-2 (3)	1	+	7			7	2460 24	240 2420-2900		1260	29.175		PYB 25	7, 085Z
	-	- 1		+	2 70	7/40		2000	7260 77		a L	95.1	רה	1 086 P	55 1-49	2215°F
7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9	EUA-72 180	J	2	11	(C)			22/05/52	כשנים- סורו מנים באסטי))	000	6 A			2,200 €
						7				1	ı		i	-		7000
2 11 656	41	081 - 0 - 20	و	8	74.7	8900	0518	200	0000	2510 600 552	^2	200	2 624	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		208.7
	4 ⊘ ()	PF-0-2 180	-	_	_:	_	-	-	3	3:-0	- <u>-</u> -)	3	1000	'	
ν 11 900	y	9 1 1 4 A A 7	,	0	73.6	206 8 18 475		P40)	19,19	0.2190	28.	CV21	3	·2012	02 7-49	عي 1502
	r v	EAA-2-150°	9-	1		,		1 1	5140 19	2140 1970-2190		(E)	12.094	9YB 1100.		40 °F
1	-							- 1						+	-	1.0
2000	41	1 PT-D-1 18	21	360	15.9	10000	o' 18950 .	.0040	2570 25	CZ 37 OLZZ OLSZ	io S	= 0	اه درو ت	000		1 0767
	40	PF-D-218							2100/2	2100 230. 212		1	0.689	9000	-	7858
			-		- {			- }		1				0		いたがって
2000 11 4	52	E4 A4-1 180°	7	2,60	15.0	8900	000,5	P6 00,	2210	2210 22%	25	000	A 163	2,000,		2000
	2	E44-2-1 180		-	-	+	+	_	287	0777 0597	1	290	126.61	21,00	1	416
			+		T				- 1 C	1000			406	(-/\-/		7551 00
2 1 1 2	5	190-1-0-10	90	3	9	0 000	00010	0 603	2000	700 2 7170 - 200	3	700	100	200		1 (12)
	; T	25-0-12	\dagger	2	+	+	+			1000	1	221		i		
17. 31.	. (100 10 V	[117.11	7	00,00, 19 950		9600	16 022	222-0216-222	B	1.29.1	149.	1-49 Fr10	l	¥ 75
	10	E4A-2-1 190°		_				į i	220,21	2200 2150 - 2215	_	1000	2.300	1 MB	ļ	22307F
								- ;	ļ					1	- 10	0.00
2002 11 7	1. J	PF-C-1 190°		360	25. 2.	10.0	900'H	0.40	32 03 2	2-219()	Ŋ au	220	6	1		17797
	43	43, CF-D-2 180°	7.7	720		. !	+	- :	2112,21	2112 2162-223	-	1	266.7	d ky Low		H 0177
	-	ļ	1	_	Ī			1	(1.5)	-	,0,0,	16210	16.783	-10 FEIG. 58FW		2580 ℃
4 11 700	46	7.4.7	9	282)	ا ا ا	H COO	3	22.25	100000000000000000000000000000000000000		550	al A. L	L		7240 ℃
	S.	E46 -4- 180	+	+		+	+		1							
2000		15 1-1-AP	2	CBI	0,7	000	97018	100	218021	21852140-2260	S.	0/21	5.62	5.621 -,0002 P		(934 %
5 6.77	8	H-D-2 80					,	į	250 21	2150 2110 -2170		1	3.206	3.20c ,0016 PMB		3,0L£2
												:	-			
	ļ.,															

TABLE 3 TEST SAMPLE RESPONSE (Continued)
CARBON-CARBON COMPOSITES

	Comments			PYB 2220°F	2120°E 20.1 1909 °E		PVB 2540°F			PY-7 1930 F			1000	WB 2120212 W-1 120212 BM	- 1	7-01C7 CK			M-1 1989 °F			76 2100°F PY-7 1911 °F	12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			10.00	W-1 6101 4			0080 PyB 2140°F Py-1 1900°F		10973 . 0190 PMB ZMO"F PM-1 MEA "F
	Dimension Change	(fnch)	00A6	8	1	 	1	ì			_	١		1		1		- 0067	[C00]	١		2085	2000	3	200	200	002A	١	1	0080		. 0190
	Mass	(grams)	7.184	10.166	1		5A74	J			3762	3.146		3				5.38	2 610 - 003)		11.932	a or 1		\neg	4		1.453	5.815	11.17		ELP.01
1000	Midplane Temperature	(•F)	0501	0151	0.55		1A20	0581	90	1/50	0641	1860		1550		,	900	1840	(410	25.25	2120	(560		(,,)	86	222	0.470	280	2020	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1360
9-61	Assumed Emissivity	(•)	.85		Q)	70							ģ	,	a 2						8	į,	6	+	+			_	, 28		85
Surface Temperature TO-9	Range		2810-2930	0322-0812 0122	120 2080-2140		2720 2560-2750	2310 - 2320	2590 2580 - 2590	2110-2260	1300-25A0	2510-2680		2130 2080 - 2140		0497-0297	2350-2360		22707260-2790	2340 -2490	1280 2260-26 ³ 0	2180 2100-2190	,	5:00	25-002		30-20	2470-2620		2/50 2060 - 2/60		58.0812-0902 OLIZ 2400. 05881
	t Value	(••)	2920	2270	2.8	_	-		0862	22.10	2470	25,00		2130	-	26 4 0	2350	2680	2270	2370	2280	\neg	1	- 1	2 6	2007	80	248	2010	2/50		270
	Heat Transfer Coeffictent	(lb/ft2sec)	75		1900	1	2 hos.					_		150		5 8						2400	01100		+			-		,0041		.0042
	Total Enthalpy	(Btu/1b)	18,950		2080	7210	18,925							18,950 059,81		18,950						18,450	2	3	+					18,950		18 950
	Stagnation	(ats)	998		74.6	}	10069							8 B	- 1	ξ 2						.0068	9,4-	8	1					6900		,0068
	Heat	(Btu/ft2sec)	77.0		7.6		79.2							78.4		77.4						T.81	6 0	1 11						20,00		79.0
	Cumulative Exposure Time	(mtn)	B		t,	2	8	_	_	:				S		1.2	45		 	2		8	7	ים ו	3	8	-	ក		080		360
	Cycle	<u> </u>	2)		-		-	_		:		H		7		_	2			-1		e	1 1	J	- 1	4	-	7		- 3		12
	Sample		DE-C-2 18	E44-4-2 18	CA A = 1 ZCO	1	DA O,0 €	Įţ		ý	DIA 15-1 60			C4A-1360		E2 60"		7	N	_	948 60°	AA-1-36	1 1	ŀ	<u>.</u>	- 1	ů		5HB (40'	0 2- 44)		C4A-5 30
	e Comey		46	\Box	12	}	22	62	1	5	عو	11/		37		180	29	40		90	119	15	Ġ	8,	30	22	59	118	179	ž,		29
			4		,	1	4	L	L	-	L			7		4	_			_		2		٩	1	1				1		7
	Test		=	H		1	=	-	<u> </u> 	-		ig		=		=	-	ļ			$\left \cdot \right $	=		=	1					=		
			2003		722	3	2004			!		$oxed{\Box}$		3005		<u>7</u> 8						200%		8	1		_		E	200	3	3007

TABLE 3 TEST SAMPLE RESPONSE (Continued)
CARBON-CARBON COMPOSITES

		25	7 52																											
	Commuts	J. 2881 L-Xd	7 2591 L-40																											
	3	PVB 21609F	A13 21908																											
-	Dimension Change (1nch)		0.0	1		+		+		 -	-							1						-						
-	Loss Di (grams)	-	_	1			+													1										
	Midplane Temperature (*F)	1600	0 27	000				†								1														
	Assumed Emissivity (-)	S. S.	ac	Ç.																										
Surface Temperature TO-9	Range	320							1																					
1	30 (2.5)		01.0	2				+	\dagger		+	1	+	+	+		+			+	-	+	-	-	-		-	-	-	
	Transfer Coefficient Value	(A)	CAM	1																										
	Total Enthalpy	-#-		2				+	+		+	1		+	+	+		1		+			1		+					
	Stagnation	00		200																										
	Heat Flux	_	П	1																			Ī							
	Exposure Time	A D	2	07/																										
	Cycl•	2	LI.	4																										
	Sample Description	NE 211	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 7 7 7 8 8 7 7 8 8 9 8 9 9 9 9 9 9 9 9 9																										
	Sample	40		ģ																										
		1	,	7																							-			
	Test	=	1 1	=				. 1																						
	ž	2000	3	2010																										

•

_

•

•

TABLE 3 TEST SAMPLE RESPONSE (Concluded)
ABLATORS

					_							Surface Temperature	P-01	-		L			
i i	Test Condition	Hode	Sample	Sample Description	Cycle	Exposure Time	Heat Flux	Stagnation Pressure	Total Enthalpy	Transfer Coefficient Value	as (a.c.)	Range (*F)	Assumed Emissivity	<u> </u>	Char Depth (inch)	Loss (arms)	Dimension Change (1nch)		Comments
202	0	2	159	5-4 14-36	K	15.67	38.7		-	0 1 00	2029	2020 A80-2050	53	1.18	4	24.76S	12	PYB 1920 F	PY-7 1925 F
ğ	ō	4	CB	160 SS-41 H 360	4	33.33	380		9,650	চ্ছত	2020	2020 1940 -2010	53.	305	109	300	P40- P10, (PYG 2040F	4-7 1405 PF
202	þ	71	63	163 55-41 360	4	79.01	38.1		0596	JE OD.	वरक	PRO-2060	58	(9)	35	28.50	0.303	3001/2 END	M-1 (452 %
2012	Ò	4	40	164 55-41 360"	1	3333	38.9	Ĭ	9,000 OOLP		0202	2020 1960-2050	\$8,	306	51.	34,100	360-950	05-00 PVB 2100 FT	Py-7 1432 °F
203	2	12	3	US 55-41 360	1	16.67	2.86		9100	1500.	25.40	19,100,0052 2540 2410-2610 .85	285	233	1.14	34.98	30'-SI	34.900 115-,065 PYB 2690°F	PY-7 2487 %
2013	2 2	4	6	55-41 360	7	33.33	94.5		9100	2500	293	19,100 10052 2670 7360-2460	-85	526	1.38	45.90	141-061	PVB 2750'F	الا- ا يعجج ه
2014	7	2	191	5-41 14 36	1		102,0		00118	.0053	25.70	2570 2400 - 2620	·85	242	1.14	24 900	14.05 PYB	1000 2 BY9	M.7 2513 F
40	2	4	162	. १५ में ३५०	7	33 33	6.10		19,100	5500	26.70	2610 2330 -2130	45	514	1.39	15.50	70-71	PYB 2740F	PY-1 2519 PP
					\parallel														
\perp	_	_			_											-			
Щ																			
					\prod														
					-						1					1			
	<u> </u>				\sqcup														
					1											_	1		
	-	-			1						1					1			
																\prod			
Ц					Ц												-		
	-	\downarrow			_											1			

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY METALLICS

Test	Test Condition	Model	Sample	Sample Description	ple ption	End Cycle	Total Exposure Time	Sample Response and Performance Characteristics
							(min)	
1943	o	2	_	TOPIC	(40° A)	9	8	NO CHANGE
			2		ā	و	180	
_			Ю		য	و	180	
1947	e	7	28		A10	3	900	
			S		P22		800	
			و		22	8	900	
1943	۲	4	0)		44		180	
			=		ঠ		98)	
			21		CA	ور	981	DAPTIAL LOSS OF DXIDE COATING
1947	١	4	5		AS	L l	da	GE
			4)		æ	L	900	
_			ī		3		48	
1947	و	2	_		A		720	
			80		63		720	
			σ		E)		720	
1947		4	9		AG		021	
			17		8	24	720	PARTIAL LOSS OF OXIDE COATING AFTER CYCLE 12
		_	8		3	24	720	PARTIAL LOSS OF OXIDE COMING APTER CYCLE 12
1948	٩	2	19		¥	و	90	19 E
			20		િ	و	180	
			12		C	9	180	
7561	σ	2	22		PB PB	30	900	
			23		88	3	$\frac{\partial}{\partial z}$	PARTIAL LOSS OF OXIDE CONTING AFTER CYCLE 18
			\$		85	50	400	٦
			\mathcal{R}		₽.	24	220	NGE
			26		84	24	720	PARTIAL LOSS OF OXIDE COATING APTER CYCLES 12 \$24
			57			2	720	OF OXIDE COATING
1951	10	4	£	COATED CA	•ુ	24	120	DATION STARTED BETWEEN
050	10	4	છ		Ø	81	540	COATING DEGRADATION STACTED BETWEEN CYCLES O-6
1959	10	4	67		A2	ß	0051	COATINY DEGRADATION STARTED BETWEEN CYCLUS 6-12
			89		92	20	1500	COATING DEGRADATION STARTED BETWEEN CYCLES 36-42
1950	01	4	ور		F3	α	540	COATING DESCRIPTION STRITTED BETWEEN CYCLES 6-12
1951	0	4	ا		53	24	720	CONTINUE DESCRIPATIONS STAPTED BETWEEN CYCLES 0-6
1969	10/12	4 /2	-	COMMEDTS	,3 NA	23	973	LOCAL SUBSTITATE OXIDATION STARTED BETWEEN CYCLES 0-6

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY (Continued) METALLICS

				,		Total	
Test	Test Condition	Model	Sample	Sample Description	Cycle	Exposure Time (min)	Sample Response and Performance Characteristics
1968	21/01	4/2	75	AM W TE GO MA	0)	500	CROSS FAILURE AT CYCLE 10
1956	0	4	LL	COATED CD 60 C3	22	000	TACK
1958	0	4	15	CZ	52	750	NO CHANSE
1956		4	ñ	12	22	200	CONTING DESEMPATION STAPTED BETWEEN CYCLES 0-6
1953	10	2	18	E	7	150	DEGRADATION
			79	73	Ω,	150	HEALLD
			ç,	623	N	150	DEFECT, H
			5	(6)	Z	150	- 24
			33	29	7	150	DEFECT HEALED
_			$\ddot{\wp}$	63	N	150	DEFECT
1:154	10	7	\$	17	R	150	EFECT, NO
			B	72	N	(50	NO CHANGE
			86	I3	N	(Sc)	,
			81	174	7J	(5)	IMPRESSION DEFECT, NO CHANNE
<u> </u>			$\frac{c}{c}$	K2	r.		
			<u>)</u> &	£X	IJ	5.1	
1955	(0)	L,	610	Ā	~1	30	HILLE DEFECT, NO CHANGE
			112	3	~1	30	
			2,5	J.Z.	4	정	
			<u>5</u>	Ī	<1	30	REMOVAL DEFECT NO CHANGE
			.14	7	~ 1	50	
		_	<u>(</u>			50	
1950	10	7	ع	==	<	8	NOTCH DEFECT NO CHANGE
			4	TX.		73	-
			613	£	!	○	
			161	21	7		INDRESSION DEFECT, NO CHANGE
			8)	35	- 1	'n	
			101	53	1.		
1957	o,	7.	701	ר)	7	ફ	
			10.5	1.2	7	÷.	
			the	3	~		
			1/	ACATEL Ta ac 5	S.	2.40	NO SHALL
			5)	-3	œ.	Ç,	1.0 JW(1)
19160	721	2	109	54	1	0	HOLE DEFINITIONIFICANT GRUNTH

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY (Continued) METALLICS

Test Condition Model Sample Description Cycle The Sample Response and Performance Characteristics Condition Cycle The The Cycle The	I					-			
12 12 12 13 14 15 15 15 15 15 15 15		Test	Model	Sample	Sample Description	5	End Cycle	Total Exposure Time (min)	Sample Response and Performance Characteristics
113		27	2	011	MATED Ta 6	. 8 75	1	ς,	· SIGNIFICANT
	J			113		47	-	30	ECT SIGNIFICANT
	ì			114		27	H	22	NO CHANGE
	1			Ξ		41	7	30	
12	1			= S=		疣	7	50	
122	1	21	2	121		40	7	30	T SIGNIFICANT
125	1			122		ሃ	1	30	- -
1 126 15 1 20				(25		۲4	7	32	DEFECT, HE
12 2 111 64 3 10 HOLE DEFECT; ABOS JENNIH 12 2 112 64 3 40 DEFECT; AD CHANGE 12 2 115 66 1 30 DEFECT; AD CHANGE 12 2 116 12 2 116 13 30 DEFECT; AD CHANGE 12 2 123 34 2 60 INVESTSION DEFECT; SIGNITH 12 2 125 34 2 60 INVESTSION DEFECT; SIGNITH 12 2 105 44 5 135 130 CHANGE 2 105 45 5 135 130 CHANGE 2 135				126		3	~	30	٠, إ
12 2 112 65 4 20 HOLE DEFECT LO CHANGE 12 2 115 30 DEMONAL DEFECT SPORS CHOWTH 12 2 116 25 120 NUTCH DEFECT SPORS CADWITH 12 2 120 NUTCH DEFECT SPORS CADWITH 12 2 123 Nu 2 120 NUTCH DEFECT SPORS CADWITH 12 2 124 Nu 2 120 NUTCH DEFECT SPORS CADWITH 12 2 105 A4 2 60 NUTCH DEFECT SPORS CADWITH 12 2 105 A4 2 60 NUTCH DEFECT SPORS CADWITH 12 2 105 A4 5 125 100 CHANGE AT CYCLE 2 107 B4 5 125 100 CHANGE AT CYCLE 2 107 B4 5 125 100 CHANGE AT CYCLE 5 105 CHANGE AT CY	ندا	5	4	111		E4	50	90	SO
12 2 115 64 5 90 RELIGIAL DEFECT CROSS CHOWTH 12 2 116 65 1 30 RELIGIAL DEFECT NO CHANINGE 12 2 125	12		7	721		6 5	7	<i>0</i> 52	DEFECT NO
12 2 116 65 1 30 DENOVAL DEFECT NO CHANNAE 12 2 1120 115 115 116	1		2	15		4	5	90	DEFECT CROSS
12 2 119 14 5 90 NUTCH DEFECT SEOSS SEQUITH 12 2 120 NUTCH DEFECT SEOSS SEQUITH 12 2 120 NUTCH DEFECT SIGNIFICANT 12 2 106 A5 4 5 150 NUTCH DEFECT SIGNIFICANT 12 2 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 2 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 2 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 2 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 2 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 106 A5 2 60 HIVEES SEON DEFECT SIGNIFICANT 12 106	6	رل	7	2		S.	-1	30	DEFECT NO
12 2 120 125 120 1	14	21	2	119		74	3	<i>0</i> b	DEFECT SPOSS
12	و	2)	2	021		75	'n	150	DEFECTIONS
12 2 124 125 140 140 150 140 150 1	4	21	7	123		Κ¢	7	0	SIGNIFICANT
12 2 105 A4 5 155 NO CHANGE 12 2 106 B5 2 60 +205 FALURE AT CYCLE 17 2 103 B4 5 125 120 CHANGE 17 2 103 B5 5 125 120 CHANGE 18 5 125 120 CHANGE 19 6 5 125 120 CHANGE 19 7 10 CHANGE 10 CHANGE 11 CHANGE 11 CHANGE 12 CHANGE 13 CHANGE 14 CHANGE 15 CHANGE 16 CHANGE 16 CHANGE 16 CHANGE 17 CHANGE 18 CHANGE 19 CHANGE 19 CHANGE 19 CHANGE 10 CHANGE 10 CHANGE 10 CHANGE 10 CHANGE 10 CHANGE 11 CH	و ا	2/	7	124		\$3	4	120	216NIF1C611"
12 2 106 A5 2 60 4255 FAILURE AT CYCLE 12 2 103 B4 5 125 110 CHAISSE 12 2 103 B5 5 125 500% FAILURE AT CYCLE		721	2	105		44	Ŋ	155	
12 2 101 bt 5 153 1:0 CHMMSE 12 2 103 65 5 153 5:00 CHMMSE 12 2 103 65 5 153 5:00 CHMMSE 14 5 153 1:00 CHMMSE 15 2 153 1:00 CHMMSE 16 5 153 1:00 CHMMSE 17 CYCLE	6	21	7	106		A5	2	8	AT CYCLE
12 2 103 B 5 123 SEONS FAILURE AT CYCLE	ہا	21	2	107		44	ľ	155	
	5	5	7	108		3	n	153	AT CYCLE
	t								
	1								
	l								
	l								
	1							:	
	1								
	1								
	l								
	1								

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY (Continued)
SURFACE INSULATORS

Test	Test Condition	Model	Sample	Sample Description	End Cycle	Total Exposure Time	Sample Response and Performance Characteristics
						(min)	
IGTT	5	7	136	HCF 180° 6-1	30	9 8	NO CHANGE
1970	01		139	17-1500 180° 6-1	e	180	MELT AROUND ID
1977	م	4	135	SICFORN 190 8-24	30	8	SHALL DADIAL SUPFACE CPACKS
_		_	142	1-9 081 0051-II			COATING CRACKS AND DEVAMINATION BETWEEN CYCLES 6-12
74-15	0	7	137	-	IJ	125	WATER DAMAGE
1971	27		(40	٠,	-	24	GROSS MELTING
1972	01		143		4	95	WATER DAMAGE
(17)	J		144		42	227	COATING CRACKS & DELAMINATION RETINEEN CYCLES 19.24
1974	01		127	81-11 °08 1 50021-IJ	4	95	NO CHENCE
-	_		821				LOCAL COATING LUSS
1979		4	129	LI-1500 180° 11-18	L	510	THALL PADIAL SURFACE CRACKS
_			130	=	_		NO CHANGE
		2	145		/2	360	NO CHANGE
_	-	_	146	°08)			
1982		-	147	50.	8	540	CRACKS BETWEEN CYCLES G-12 DELAMINATION BETWEEN RAN
		_	148				- 1
36		4	149		12	360	CRACKS FETWEEN CYCLES O- 6, DELAMINATIONS BETWEEN 6-1
	_		150				CHCKS & TELAMINATION BETWEEN CYCLES 6-12
1987			Ū		٤.	\ 8 0	
-		_	152				CRAICS & DELAMINATION BETWEEN CYCLES OC
(187)		2	(53	REI 120° 12-9	30	28	Significant Distriction of the Control of the Contr
2			154	1			CHANGE
			50.	l 8			HO THUNGE
-	5	Þ	156	261 \20° \2-4			NO CHANGE
	-		151	HCF 125 12-9			CUCE CHAILSE
	-	_	153	J-1500- 120, 12-9			E CHANGE
1:00	\bar{c}	2	138	1-9 0381 JOH			
-	-		14)		,		- CERCE CRACKS & DELAMINATION RETINERY CYCLES 12-18
-		4	132				
		-	461				LINE THE ENDER DETINEER CYCLES 0-6, DEWINATION 24-30
	-	 -					

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY (Continued CARBON-CARBON COMPOSITES

							Total	
Test	Condition	Model	Sample	Sample Description	e io	Cycle	Exposure Time (min)	Sample Response and Performance Characteristics
1998	7.7	2	169	19-8-I	1800	J.	150	PIMED SURPACE
		_	017	DE-8-2	1800	7	150	Ų
		٨	167	E4A-3-1	°08	4	120	LOCAL FALLUBE AT PERIPHERY
			168	E4A-3-2	\ 8 0°	4	120	1.1
2000	11	2	47	1-0-7	180%	7.1	360	
2003			48	2-0-3	180,		98	
2001		4	55	E4A-4-1	180		484	LOSS OF SURFACE
7007			ĮŠ	E4A-2-1	'SO'	「 「	484	SURFACE AND
2002		2	ΔS	1-5-2	180°		360	S CRACKS AT 6 CYCLES, LOCAL
2003		4	90	PF-C-2	,08 0	27	380	SUPPACE CRACKS AT C. CYCLES
			R	E4A-4-2	180°	12	300	SURFACE UNCHANGED, SOME SUBSURFACE LOSS
		2	49	E4A-1-1	180	g	180	
2006			321	C4A-1	~ ~	ı	180	SURFACE UNCHANGED EXCEPT LOGIL LOSS, LOGAL SIRUCTURE FAILURE
2004		4	172	DA 0.5	ŝ	~1	18	
2006			29	EM1-1	°S	ы	75	
200 F			714	(H	ŝ	`	45	LOCAL COATING LOSS
			175	DIH-S	9		45	LAPCE CENTRAL HOLE
2004			ياد	JAB 1.5-1	E	~	80	(XII
			F	DA 1.5	ိဒ္ဓ	-1	ā	SURFACE LOSS AND LOCAL, HOLE
2006			/80	53	,3	2	51	LOCAL SUPFACE LOSS
			118	CHP1	B	7	57	LARGE CENTRAL HOLE
			179	SH8	ŝ	ι	51	SAME, BUT SIGNIFICANT SUPPACE LOSS
		•	58	1-H	° 3	7	30	LOCAL COATING LOSS
			R	CH-3	°9	4	20	NO SIGNIFICANT CHANGE
2008		7	ऋ	C4A-3	360°	7	360	NU APPARENT SURFACE CHANGE SOME SUBSURFACE LOSS
2009			40	E4A-5	36°	2	40	LOCAL SURFACE LOSS, SOME SUBSURFACE LOSS
2010			38	C4A-2	3608	4	120	LOCAL SUPPLIE LOSS, SIGNIFICANT SUBSURFACE LOSS
					1			

TABLE 4 TEST SAMPLE PERFORMANCE SUMMARY (Concluded)
ABLATORS

Sample Response and Performance Characteristics					LOCAL LOSS AT HONSYCOMB	¥	AT 850	LOSS AT															
Total Exposure Time (min)	10.67	33.33	Lo ol	33.33	10.67	33.33	اه.وا	5355															
End	Ţ																	 					
Sample Description	55-41 HC 360°	¥					4	SS-41 HC 360															
Sample	159	5	163	Ι.	Ι.	190	9	162														1	
Mode 3	2	4	2	4	2	4	0	4												1			
Test Condition	C)			C	١																	
Test	7/0/1		200	<u>}</u>	20.0	3	100	-															

TABLE 5 TEST SAMPLE SURFACE CATALYCITY RESULTS
TEST CONDITIONS

														Γ			Ì				Γ			П		
	Comments																			,						
Center Post	Stagnation Pressure (atm)	<i>99</i> ∞.	.0062	9000	P200.	. 2L00		.000 €	10005	9000.	$\omega \omega \omega d$	5 .D														
xnl	Center Post (Btu/ft³sec)	55.9	ざる	37.4	40.6	48.5		(22.2)	(29.8)	(35.0)	(39.7)	(41.3)														
Heat Flux	Calibration Model (Btu/ft²sec)	28.5 355	1					27.1 350																		
Air Flow		•	7800				_		.009.2																	
	Pressure (atm)		-1	.\63	الم\.	72611	\top	_	156		167	.172														_
	<u>(a</u>	3960	4910	2410	58∞	0429			48°C		815	0229														
Average Total Enthalpy	EB (8tu/1b)	2720	4190	4750	5250	5620		2570	4080		- 1															
Centerline	Cycle Current Total Enthalpy HF (Amps) (Btd/ib)	0889	9780	10,880	12,090	13,380		0820	9760	10,800	12,110	13,400	. 1													
	Current (Amps)	355	593	441	1480	-	-	7			470															
	Cycle	7	-					2				- 1														
	Sample Sample Description	HCF 180 12-21						HCF 180° 12-21																		
	Sample	コンエ						エンド								•										
	Sample	1474149	-					051+15 ल				_														_
		2				_	T	4				_														
Test	ర	9	0			_		- [0			_														
	Test	88						S S S																		_

TABLE 5 TEST SAMPLE SURFACE CATALYCITY RESULTS (Concluded)
SAMPLE RESPONSE

				_			_		Surface Temperature	reture	Radiation	0.444			
		Sample		Cold Mall Heat Flux	Hot Wall S	Stagnation	Total	Transfer Coefficient Value	Za)ise	Assumed		Equilibrium Heat Flux	Flux		Comments
•			Š	(:tu/ft2sec)	_			(1b/ft2sec)	3.0	(-)	for qre (*f)	(Btu/ft2sec)	٠,		
	13/7	10.00		25.9	10 V V	3	08.80	86.00	2010	35	11 \2	(3.3	55'	۲-۲۵	الوجيء مد
			-	_	_	\vdash	-		2010	_		13.3	25.	73 2	2,0012
		-		33.3	3).4	5 e 30'	9780	.0034	2002	_	2614	5	48	- 1	1150 0511
	49		-	-	\vdash	-	_		aC02		-	٠	٠٩٥	- [2/40 %
	147			374	80	398	088'0	₽€00.	2190		2691	ت و	95.	-	1847 5
	48		F				-		2160		_	و و	48	6,0	1 0622
	147			3 00	31.10	1,900	12,090	.∞3A	<i>عدء</i> ء		2760	19.8	15.	- 1	4-254
	150				_	_	-		22.70		-	198	5	-	2340 %
			L	185	45.95	2000	3,380	7.00	2350		2915	22.3	43	_[\$035 Pt
	148				-		_	ll	2352	_	-	22.3	48	8	2480 °F
-															
1-	149 HE	HCF 1800 12-71	7	(22.3)		3000	0850		2060	51.	1	4	١		1,504
1.3	Г				-		_		2000	-		14.9		643	2140°F
12	146		-	(8.82)		2005	9760	-	2/50			3		ر کار	1836 °F
110	150	_	L			_	-		2160	-		۵۹ و	1	C)	3, 05,77
1	571			(350)		3930	008.01		2230		-	فغا		¥ (101
410	150					_	-		22.40	-		0.6		25	1- O/67
14.	_			(2'58)		5000	12,110		22510			₹'07		1	١ - ١٥٥١
110	150					1	-		2300			21.0		200	7. 0857
تتعا	146			(41.5)		0013	13,400		0362			22.6		- (3 c	2007
716	0.20						-	-	23.70		-	22.9		2	2960 %
1	_						-								
1															
1													-		
1															
1										-					
1															
i	-											}			
1	-														
1															
1															
1															
1	-														
1											-	_	_		